...
首页> 外文期刊>Frontiers in Cellular Neuroscience >Dopaminergic Control of Locomotor Patterning during Development: A Tail for the Ages
【24h】

Dopaminergic Control of Locomotor Patterning during Development: A Tail for the Ages

机译:运动过程中运动模式的多巴胺能控制:一个时代的尾巴

获取原文
           

摘要

Dopamine (DA) directly modulates motor circuits in the brain and spinal cord. While the somata of all dopaminergic (DAergic) neurons in zebrafish and mammals are supraspinal, some of these, termed diencephalospinal neurons (DDNs), send long-distance descending projections into the spinal cord (Figure 1A ) and have recently been implicated in spinal network (Reimer et al., 2013 ) and locomotor development (Lambert et al., 2012 ) in zebrafish. After many years of seminal research on the morphology and genetic specification of zebrafish DDNs and the DAergic diencephalospinal tract (DDT) (Schweitzer and Driever, 2009 ), our recent study was the first to explicitly investigate DDN function (Lambert et al., 2012 ). We combined pharmacological DAergic perturbations, demarcated transections, and selective chemogenetic ablation of orthopedia ( otp ) neurons to demonstrate that conserved DAergic otp neurons–a subset of which are DDNs (Fujimoto et al., 2011 ; Figure 1A2 )—provide the impetus for endogenous DA receptor 4 (D4R) signaling to initiate and maintain a developmental switch, between 80 and 96 h post fertilization (hpf), to the mature episodic locomotor pattern of zebrafish. Interestingly, Reimer et al. ( 2013 ) also demonstrated that DAergic otp neurons drive endogenous D4R signaling, confirmed both pharmacologically and genetically, but for an even earlier developmental function- to influence the differentiation of spinal motor progenitor cells between 24 and 48 hpf. Both studies used additional experimental approaches to demonstrate that D4R signaling directly in the spinal cord was sufficient to emulate the developmental processes under question: localized spinal application of DA or D4R agonists was shown to influence progenitor pools, when applied for many hours (Reimer et al., 2013 ), or to modulate the duration of locomotor episodes, when applied for just 5–10 min (Lambert et al., 2012 ). Collectively, these studies unveil that DDNs may drive endogenous spinal D4R signaling, via the DDT, for two temporally distinct roles in locomotor development: (1) a transient early role that acts directly on progenitor pools but not neurons, with long lasting consequences (Figure 1B , left), and (2) a late role that likely acts through ongoing spinal neuronal signaling, for maintenance of episodic locomotor patterns (Figure 1B , right). This commentary considers the extent to which an understanding of each of these developmental roles integrates with or is modified by the most recent DDN-related findings of Jay et al. Figure 1 Descending dopaminergic control of spinal network and locomotor development. (A) Schematics of dorsal views of the zebrafish brain and spinal cord, by 4-days-old, of: (A1) dopaminergic diencephalic clusters (DC) DC1-DC6. Note that DC2, DC4, and DC5 are the exclusive dopaminergic diencephalospinal neurons (DDNs) that comprise the dopaminergic diencephalospinal tract (DDT). (A2) orthopedia-specified neurons in the Tg(otpb.A:nfsB–egfp)~( zc 77)line used in Lambert et al. ( 2012 ), combined with systemic and localized dopamine receptor (DAR) pharmacology. (A3) DDNs targeted in Jay et al. ( 2015 ), but with no DAR pharmacology. (A4) single cell morphology of DC2 DDNs that tile virtually the entire rostrocaudal central neuraxis, as well as the peripheral sensory targets of the otic capsule, lateral line, and head and trunk neuromasts. (B) Putative model of the role of DDN-spinal D4R signaling in: ( B , left) spinal neuron differentiation (24–48 hpf) via direct influence on spinal motor progenitor cells (pMNS) and ( B , right) locomotor development (80–96 hpf) via influence on unknown spinal targets. (C) Timeline of DDN/D4R perturbations, recovery, and testing for the studies specified. Test results denote changes, at the color-coded time of testing, in the number of HB9 motor neurons (MN), total distance traveled (TDT), and episode duration (ED) as a function of each DDN/D4R perturbation. The Otp DDN perturbation in Lambert et al. ( 2012 ) was via chemogenetic ablation in the Tg(otpb.A:nfsB–egfp)~( zc 77)line, whereas in Reimer et al. ( 2013 ) was via otpa~( m 866)mutants (where otpa expression begins at 18 hpf). All perturbations labeled as D4R were systemic pharmacological D4R antagonism/agonism, except: localized application of D4R agonist to transected spinal cord, and in addition to systemic pharmacology, recapitulated via D4Ra mRNA knockdown and rescue (respectively), recapitulated via localized application of D4R agonist to transected spinal cord in an adult zebrafish model of spinal cord injury. Abbreviations in (A4) denote the following: telencephalon (Telen), diencephalon (Dien), mesencephalon (Mesen), hindbrain (HB), and spinal cord (SC). Since the later role of DDNs suggests a mechanism of ongoing DAergic neurotransmission to sculpt episodic locomotion, monitoring activity patterns of DDNs during neural locomotor output in vivo could elucidate potential DDN-spinal locomotor circuit dyna
机译:多巴胺(DA)直接调节大脑和脊髓中的运动电路。斑马鱼和哺乳动物中所有多巴胺能(DAergic)神经元的躯体都是棘上神经,其中一些称为二脑脊髓神经元(DDN),将长距离递减的投影发送到脊髓中(图1A),并且最近与脊髓网络有关。 (Reimer等,2013)和斑马鱼的运动发育(Lambert等,2012)。在对斑马鱼DDN的形态和遗传学规范进行了开创性研究之后(Schweitzer和Driever,2009年)(Schweitzer和Driever,2009年),我们最近的研究是第一个明确研究DDN功能的研究(Lambert等人,2012年)。 。我们结合了药理学上的DAergic摄动,划界的横断面和骨科(otp)神经元的选择性化学生成消融,以证明保守的DAergic otp神经元(其中的一部分是DDN)(Fujimoto等,2011;图1A2)为内源性提供了动力。 DA受体4(D4R)发出信号,启动并维持受精(hpf)后80至96小时之间向斑马鱼的成熟情节运动模式的发育转换。有趣的是,Reimer等。 (2013)还证明了DAergic otp神经元驱动内源性D4R信号传导,在药理和遗传学上得到了证实,但对于更早的发育功能而言,影响脊髓运动祖细胞在24和48 hpf之间的分化。两项研究均使用其他实验方法来证明D4R直接在脊髓中的信号传导足以模拟所讨论的发育过程:当DA或D4R激动剂局部应用数小时后,局部应用脊髓会影响祖细胞集合(Reimer等(2013)或调节运动发作的持续时间(仅应用5-10分钟)(Lambert等,2012)。总的来说,这些研究揭示了DDN可能通过DDT来驱动内源性脊髓D4R信号传导,从而在运动发育中发挥两个在时间上截然不同的作用:(1)短暂的早期作用直接作用于祖细胞而不是神经元,具有长期持续的后果(图图1B,左)和(2)可能通过持续的脊髓神经元信号传导起作用的晚期角色,以维持发作性运动模式(图1B,右)。该评论考虑了对这些发展角色中的每一个的理解与Jay等人最近的DDN相关发现相融合或被其修改的程度。图1下降的多巴胺能控制脊髓网络和运动的发展。 (A)4天大的斑马鱼大脑和脊髓背面视图的示意图:(A1)多巴胺能双脑簇(DC)DC1-DC6。请注意,DC2,DC4和DC5是构成多巴胺能双脑脊髓束(DDT)的排他性多巴胺能双脑脊髓神经元(DDN)。 Lambert等人使用的Tg(otpb.A:nfsB–egfp)〜(zc 77)系中的(A2)骨科指定的神经元。 (2012),结合全身和局部多巴胺受体(DAR)药理学。 (A3)Jay等人针对的DDN。 (2015),但没有DAR药理学。 (A4)DC2 DDN的单细胞形态,几乎覆盖了整个罗尾尾中央神经轴,以及耳膜,侧线以及头和躯干神经质的外围感觉目标。 (B)DDN-脊髓D4R信号在以下方面的作用的推定模型:(B,左)脊髓神经元分化(24–48 hpf),通过直接影响脊髓运动祖细胞(pMNS)和(B,右)运动发育( 80–96hpf)通过影响未知的脊髓靶标。 (C)针对指定研究的DDN / D4R扰动,恢复和测试的时间表。测试结果表示在测试的颜色编码时,HB9运动神经元(MN)的数量,行进的总距离(TDT)和发作持续时间(ED)随每个DDN / D4R扰动而变化。 Lambert等人的Otp DDN扰动。 (2012年)是通过Tg(otpb.A:nfsB–egfp)〜(zc 77)系的化学生成消融,而Reimer等人(2012年)是通过化学生成消融法。 (2013)是通过otpa〜(m 866)突变体(其中otpa表达始于18 hpf)。标记为D4R的所有扰动均为全身性药理D4R拮抗作用/激动作用,但以下情况除外:将D4R激动剂局部应用于横切脊髓,除全身性药理作用外,分别通过D4Ra mRNA敲除和挽救进行概括,通过局部应用D4R激动剂进行概括。在成人斑马鱼脊髓损伤模型中切断脊髓。 (A4)中的缩写表示以下各项:端脑(Telen),间脑(Dien),中脑(Mesen),后脑(HB)和脊髓(SC)。由于DDN的后续作用表明了持续的DA能神经传递作用来雕刻发作性运动,因此在体内神经运动输出期间监测DDN的活动模式可以阐明潜在的DDN-脊髓运动电路动力

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号