...
首页> 外文期刊>Frontiers in Cellular Neuroscience >Editorial: CNS Recovery after Structural and / or Physiological / Psychological Damage
【24h】

Editorial: CNS Recovery after Structural and / or Physiological / Psychological Damage

机译:社论:结构和/或生理/心理受损后中枢神经系统恢复

获取原文
           

摘要

The central nervous system (CNS) is critically vulnerable to damage in post-natal and adult life, for two reasons. First, its major constitutive cell type, neuron, is more fragile than most other differentiated cell types, due to its exclusive dependency on glucose for energetic metabolism, to its high chronic demand of oxygen supply, to lower levels of antioxidant defenses and to extreme structural vulnerability of its long and thin axonal expansions. Second, any neuron damage or loss has dysfunctional outcome because of the specific dependency of nervous functions on the topography of neuronal interconnections. CNS damage can occur from environmental threats including both physical (injuries) and psychosocial (stress) risks. Consequently, several forms of brain plasticity can be affected and trigger adaptive responses to maintain homeostasis or functional recovery. These processes engage the immune system, the autonomic nervous system (ANS) besides the hypothalamo-hypophyseo-adrenal (HPA) axis via specific CNS-borne neurotransmitters, hormones, neuropeptides and growth factors. The goal of this Research Topic is to review the cellular and molecular mechanisms of damageinduced CNS plasticity through a selection of original research articles in this field. Derghal et al. use the neuroendocrine regulation of food intake to document the adaptive role of a recently emerged mechanism of neuroplasticity: neuronal synthesis of microRNAs (miRNAs) i.e., short non-coding RNA molecules that repress gene expression at the post-transcriptional level by binding to target mRNAs. They screened in silico the brain gene target of the major anorexigenic hormone leptin, POMC, for miRNA binding sites. It revealed 3 candidate miRNAs, which were indeed found upregulated in the hypothalamus of congenitally obese, leptin-deficient ob/ob mouse. This result provides a new mechanism of hormone-dependent neuronal plasticity with relevance to a physio-pathological adaptation. Segura et al. also use leptin hormonal signaling in the cerebral regulation of food intake, to document another effector mechanism of neuroplasticity: modulation of neurogenesis from adult neural stem cells. They report that leptin in vitro depresses adult neurogenesis from the canonical neural stem cells of the rodent subventricular zone (SVZ) through Ob-receptor-induction of apoptosis in immunocytochemically identified neuronal progenitors. This hormone-induced neurotoxicity is shown to be mediated through the signaling pathway of extracellular signal-regulated kinases ERK-1/2 and cyclin D1, i.e., the molecular switch between cell division and apoptosis. Zaky and Moftah address post-lesional induction of neurogenesis-stimulating molecules in the spinal cord of the Amphibian Pleurodeles. This animal model displays extensive neural regeneration including both structural and locomotor restorations. They report post-lesional in vivo inductions of FGF2, i.e., the major intercellular mitogen for adult neural stem cells, and of the stem cell marker nestin. These data provide cues for post-lesional sequelae curing in adult mammals, especially via cellular therapy. Kilic et al. characterize motor function and histological markers of brain plasticity following stroke induction by middle cerebral artery occlusion in adult mouse, treated or not with the secondary stroke-preventing clinical drug HMG-CoA reductase inhibitor rosuvastatin. They show rosuvastatin treatment increases functional motor recovery, neuronal survival and capillary density and decreases forebrain atrophy as compared to untreated lesioned mice. A single molecule-targeted drug can thus help neurological recovery via lesion-induced neuroplasticity potentiation. Zaky et al. use bacterial lipopolysaccharide (LPS)-induced neuroinflammation in adult rats as an in vivo model to investigate the mechanisms of neuroprotection by the drugs valproic acid (inhibitor of the epigenetically acting histone deacetylase-1) and curcumin. Strong synergy of the two drugs were shown by in vivo combination-induced additivity of their respective effects on histological and molecular markers of neuroinflammation, on biochemical markers of LPS-induced oxidative stress, and on LPS-induced repression of the five members of Let-7 miRNA family. The combined drugs suppressed LPS-induced neuroinflammation and restored oxidation marker, antioxidant defense and Let-7 miRNA to their control levels. Khalil et al. designed a computational assay to investigate the potential use of a recent cognitive psychological test of associative learning capacity (Acquired Equivalence Associative Learning Task, AEALT) to assess cognitive impairment of the Generalized Tonic Clonic (GTC) epilepsy in human clinics. Test application on a small cohort of GTC epileptic and control age- matched subjects confirmed the previously reported functional connectivity between hippocampus and basal ganglia, which validates the computational approach of this pathological
机译:由于两个原因,中枢神经系统(CNS)在出生后和成人生活中极易受到伤害。首先,它的主要组成型细胞类型神经元比大多数其他分化的细胞类型更脆弱,这是由于其仅依赖葡萄糖进行能量代谢,长期对氧气的需求旺盛,抗氧化剂防御水平较低以及结构极端轴突长而细的脆弱性。其次,由于神经功能对神经元互连结构的特殊依赖性,任何神经元损伤或丧失都会导致功能障碍。中枢神经系统的损害可能来自环境威胁,包括人身(伤害)和心理(压力)风险。因此,几种形式的大脑可塑性可能会受到影响,并触发适应性反应,以维持体内稳态或功能恢复。这些过程通过特定的CNS传递的神经递质,激素,神经肽和生长因子参与免疫系统,下丘脑-下垂体-肾上腺(HPA)轴以外的自主神经系统(ANS)。本研究主题的目的是通过选择该领域的原创研究文章来综述损伤诱导的CNS可塑性的细胞和分子机制。 Derghal等。使用食物摄入的神经内分泌调节来记录最近出现的神经可塑性机制的适应性作用:microRNA(miRNA)的神经元合成,即短的非编码RNA分子,通过与靶mRNA结合而在转录后水平上抑制基因表达。他们在计算机上筛选了主要的厌食激素瘦素POMC的大脑基因靶标中的miRNA结合位点。它揭示了3个候选miRNA,确实在先天性肥胖,瘦素缺陷型ob / ob小鼠的下丘脑中上调。该结果提供了与生理病理适应性有关的激素依赖性神经元可塑性的新机制。 Segura等。也使用瘦素激素信号传导来调节食物摄入量的大脑,以证明神经可塑性的另一种效应机制:调节成年神经干细胞的神经发生。他们报告说,瘦素在体外通过免疫细胞化学鉴定的神经元祖细胞的Ob受体诱导凋亡抑制了啮齿动物脑室下区(SVZ)的规范神经干细胞的成年神经发生。该激素诱导的神经毒性显示出是通过细胞外信号调节激酶ERK-1 / 2和细胞周期蛋白D1的信号传导途径介导的,即在细胞分裂和凋亡之间的分子转换。 Zaky和Moftah讨论了两栖类侧耳钉脊髓中神经刺激分子的病后诱导。该动物模型显示出广泛的神经再生,包括结构和运动恢复。他们报道了FGF2(即成年神经干细胞的主要细胞间有丝分裂原)和干细胞标志物巢蛋白的病变后体内诱导。这些数据为成年哺乳动物病后后遗症治疗提供了线索,尤其是通过细胞疗法。 Kilic等。表征成年小鼠中脑中动脉闭塞诱发卒中后运动功能和脑可塑性的组织学标记,该成年小鼠是否用预防二次卒中的临床药物HMG-CoA还原酶抑制剂罗舒伐他汀治疗。他们显示,与未治疗的病变小鼠相比,罗舒伐他汀治疗可增加运动功能恢复,神经元存活率和毛细血管密度,并减少前脑萎缩。因此,以单一分子为靶标的药物可以通过病变诱导的神经可塑性增强来帮助神经系统恢复。 Zaky等。以细菌脂多糖(LPS)诱导的成年大鼠神经炎症为体内模型,以研究丙戊酸(表观遗传作用的组蛋白脱乙酰基酶-1抑制剂)和姜黄素对神经保护的机制。两种药物在体内的联合诱导作用分别对神经炎症的组织学和分子标志物,LPS诱导的氧化应激的生化标志物以及LPS诱导的Let-let五个成员的阻遏作用产生了强协同作用。 7 miRNA家族。合并的药物可抑制LPS诱导的神经炎症,并将氧化标记,抗氧化剂防御和Let-7 miRNA恢复至控制水平。 Khalil等。设计了一种计算分析方法,以研究最近的联想学习能力的认知心理测验(后天等效联想学习任务,AEALT)在人类诊所中评估广义强直性阵挛(GTC)癫痫的认知障碍的潜在用途。在一小群GTC癫痫和年龄匹配的受试者中进行的试验应用证实了先前报道的海马体与基底神经节之间的功能连接,这验证了这种病理学的计算方法

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号