...
首页> 外文期刊>Geoscientific Model Development >Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0
【24h】

Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0

机译:微观地形雪的重新分布和侧向地下过程对北极多边形地面生态系统中水文和热态的影响:使用ELM-3D v1.0的案例研究

获取原文
           

摘要

Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. Here, we analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0). Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SR and subsurface process representation. When SR was included, model predictions better agreed (higher Rsup2/sup, lower bias and RMSE) with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and Rsup2/sup of 0.59?°C, 1.82?°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~ 10?cm shallower and ~ 5?cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ~ 3?cm. Our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the E3SM land model will facilitate a wide range of analyses heretofore impossible in an ESM context.
机译:微地形特征(例如多边形地面)是阿拉斯加北极沿海平原景观异质性的特征来源。在这里,我们分析了阿拉斯加巴罗附近多边形冻原站点的积雪再分布(SR)和地下地下过程对水文和热态的影响。我们扩展了E3SM中集成的土地模型,通过考虑微观地形并结合了水和能源的地下横向运输(ELM-3D v1.0)重新分配了降雪。在阿拉斯加的巴罗环境天文台,对一个跨多边形冻原景观的断面进行了长达10年的模拟,以隔离SR和地下过程表示的影响。当包括SR时,模型预测与观察到的多边形边缘和中心之间的雪深差异更好地吻合(较高的R 2 ,较低的偏差和RMSE)。该模型还能够准确地再现多边形边缘和中心的土壤温度垂直剖面(总体偏差,RMSE和R 2 分别为0.59?C,1.82?C和0.99)。 )。 SR引起的冬季积雪深度的空间异质性产生了表层土壤温度异质性,该异质性在深度和时间上传播,分别导致多边形边缘和中心之下的最大年解冻深度分别降低了约10?cm和约5?cm。另外,在夏季,SR导致表面能通量和土壤水分的空间异质性。排除地下地下水文和热过程对平均状态的影响很小,但是由于人为阻止地下液体压力和温度梯度随时间推移而在空间上消散,因此高估了土壤水分和土壤温度的空间变异性。地下次表面过程对最大融化深度的影响不大,平均绝对差为〜3?cm。我们将E3SM陆地模型中的三维地下水文动力学和地下热力学集成在一起,将有助于进行迄今为止在ESM环境中不可能进行的广泛分析。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号