...
首页> 外文期刊>Geoscientific Model Development Discussions >A?new approach for simulating the paleo-evolution of the Northern Hemisphere ice sheets
【24h】

A?new approach for simulating the paleo-evolution of the Northern Hemisphere ice sheets

机译:模拟北半球冰盖古演化的新方法

获取原文
           

摘要

Offline forcing methods for ice-sheet models often make use of an index approach in which temperature anomalies relative to the present are calculated by combining a?simulated glacial–interglacial climatic anomaly field, interpolated through an index derived from the Greenland ice-core temperature reconstruction, with present-day climatologies. An important drawback of this approach is that it clearly misrepresents climate variability at millennial timescales. The reason for this is that the spatial glacial–interglacial anomaly field used is associated with orbital climatic variations, while it is scaled following the characteristic time evolution of the index, which includes orbital and millennial-scale climate variability. The spatial patterns of orbital and millennial variability are clearly not the same, as indicated by a?wealth of models and data. As a?result, this method can be expected to lead to a?misrepresentation of climate variability and thus of the past evolution of Northern Hemisphere (NH) ice sheets. Here we illustrate the problems derived from this approach and propose a?new offline climate forcing method that attempts to better represent the characteristic pattern of millennial-scale climate variability by including an additional spatial anomaly field associated with this timescale. To this end, three different synthetic transient forcing climatologies are developed for the past 120 kyr following a?perturbative approach and are applied to an ice-sheet model. The impact of the climatologies on the paleo-evolution of the NH ice sheets is evaluated. The first method follows the usual index approach in which temperature anomalies relative to the present are calculated by combining a simulated glacial–interglacial climatic anomaly field, interpolated through an index derived from ice-core data, with present-day climatologies. In the second approach the representation of millennial-scale climate variability is improved by incorporating a?simulated stadial–interstadial anomaly field. The third is a?refinement of the second one in which the amplitudes of both orbital and millennial-scale variations are tuned to provide perfect agreement with a?recently published absolute temperature reconstruction over Greenland. The comparison of the three climate forcing methods highlights the tendency of the usual index approach to overestimate the temperature variability over North America and Eurasia at millennial timescales. This leads to a?relatively high NH ice-volume variability on these timescales. Through enhanced ablation, this results in too low an ice volume throughout the last glacial period (LGP), below or at the lower end of the uncertainty range of estimations. Improving the representation of millennial-scale variability alone yields an important increase in ice volume in all NH ice sheets but especially in the Fennoscandian Ice Sheet (FIS). Optimizing the amplitude of the temperature anomalies to match the Greenland reconstruction results in a?further increase in the simulated ice-sheet volume throughout the LGP. Our new method provides a?more realistic representation of orbital and millennial-scale climate variability and improves the transient forcing of ice sheets during the LGP. Interestingly, our new approach underestimates ice-volume variations on millennial timescales as indicated by sea-level records. This suggests that either the origin of the latter is not the NH or that processes not represented in our study, notably variations in oceanic conditions, need to be invoked to explain millennial-scale ice-volume fluctuations. We finally provide here both our derived climate evolution of the LGP using the three methods as well as the resulting ice-sheet configurations. These could be of interest for future studies dealing with the atmospheric or/and oceanic consequences of transient ice-sheet evolution throughout the LGP and as a?source of climate input to other ice-sheet models.
机译:冰盖模型的离线强迫方法通常使用指数方法,在该方法中,通过组合模拟的冰川-冰川间气候异常场来计算相对于当前温度的异常,并通过格陵兰冰芯温度重建得出的指数进行内插,并具有当今的气候。这种方法的一个重要缺点是,它显然在千禧年尺度上曲解了气候的可变性。其原因是,所使用的空间冰间冰期异常场与轨道气候变化有关,而其随指数的特征时间演化而变化,该指数包括轨道和千年尺度的气候变化。大量的模型和数据表明,轨道和千年变率的空间格局显然是不同的。结果,可以预期该方法会导致对气候变异性的错误描述,从而导致北半球(NH)冰原的过去演化。在这里,我们说明了从这种方法得出的问题,并提出了一种新的离线气候强迫方法,该方法试图通过包含与此时标相关的额外空间异常场来更好地表示千禧年尺度气候变化的特征模式。为此,在过去的120年中,采用扰动方法开发了三种不同的合成瞬变强迫气候,并将其应用于冰盖模型。评估了气候对NH冰盖古演化的影响。第一种方法遵循通常的指数方法,在该方法中,通过将模拟的冰川-冰川间气候异常场(通过从冰芯数据得出的指数内插)与当前气候相结合,来计算相对于当前温度的温度异常。在第二种方法中,通过结合模拟的星际-星际异常场来改善千禧年尺度的气候变异性。第三个是对第二个的改进,其中对轨道和千禧年尺度变化的幅度都进行了调整,以与最近在格陵兰岛上发布的绝对温度重建提供完美的一致性。三种气候强迫方法的比较凸显了通常的指数方法趋向于高估北美和欧亚大陆在千年尺度上的温度变化。在这些时间尺度上,这会导致相对较高的NH冰量变化。通过增强的消融,这会导致整个冰川期(LGP)的冰量过低,低于或低于估计的不确定性范围。仅提高千禧年尺度变异性的表示,就可以在所有NH冰盖中,特别是在芬诺斯堪的亚冰盖(FIS)中,大大增加冰量。优化温度异常的幅度以匹配格陵兰的重建,导致整个LGP中模拟冰盖体积的进一步增加。我们的新方法可以更真实地反映轨道和千年尺度的气候变化,并改善LGP期间冰盖的瞬变强迫。有趣的是,我们的新方法低估了海平面记录表明的千禧年尺度上的冰量变化。这表明要么是后者的起源不是NH,要么是我们研究中未表现出的过程,特别是海洋条件的变化,需要被用来解释千禧年规模的冰量波动。最后,我们在此同时提供了使用这三种方法得出的LGP的气候变化以及由此产生的冰盖构造。这些可能对于将来研究整个LGP中瞬时冰盖演化对大气或海洋的影响以及作为其他冰盖模型的气候输入源的未来研究感兴趣。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号