首页> 外文期刊>ISIJ international >Modelling the Evolution of Multiple Hardening Mechanisms during Tempering of Fe–C–Mn–Ti Martensite
【24h】

Modelling the Evolution of Multiple Hardening Mechanisms during Tempering of Fe–C–Mn–Ti Martensite

机译:Fe-C-Mn-Ti马氏体回火过程中多种强化机制演变的模型

获取原文
           

摘要

We model the hardness evolution of martensite during tempering as a linear addition of multiple hardening mechanisms that is combined with a microstructural Kampmann-Wagner-Numerical (KWN) model to simulate the nucleation and growth of TiC-precipitates during tempering. The combined model is fitted to the measured hardness evolution during tempering at 300°C and 550°C of martensitic steels with and without the addition of titanium. The model predicts TiC-precipitate sizes in agreement with experimental observations and generates fitting parameters in good agreement with literature. The microstructural components that give the highest contribution to the overall hardness are Fe_(3)C precipitates (88 HV) and dislocations (54 HV). Both Fe_(3)C- and dislocation-strengthening decreases rapidly during the initial stage and stabilise after 10 minutes of tempering. The model shows that the decrease in dislocation density due to recovery is slowed down due to the presence of TiC-precipitates. Titanium atoms in solid solution give a stable hardness contribution (25 HV) throughout the tempering process. TiC-precipitate strengthening generates a minor contribution (3.5 HV). The model shows that less than 1% of the equilibrium volume fraction of TiC-precipitates forms during isothermal tempering at 550°C due to the large misfit strain (1.34 GJ/m~(3)) and a limited density of potential nucleation sites in the martensite. The model shows that the hardness of tempered martensitic steels could potentially be increased by increasing the TiC-precipitate density by reducing the misfit strain.
机译:我们将马氏体回火过程中的硬度演变建模为多种硬化机制的线性添加,并与微观结构Kampmann-Wagner-Numerical(KWN)模型相结合,以模拟回火过程中TiC析出物的形核和生长。组合模型适合于添加和不添加钛的马氏体钢在300°C和550°C回火期间测得的硬度变化。该模型可预测TiC沉淀物的大小,与实验观察结果相符,并生成与文献相吻合的拟合参数。 Fe_(3)C析出物(88 HV)和位错(54 HV)对总硬度有最大贡献。 Fe_(3)C-和位错-强化在初始阶段均迅速降低,并在回火10分钟后稳定。该模型显示由于TiC沉淀的存在,由于恢复引起的位错密度的降低被减慢了。固溶体中的钛原子在整个回火过程中具有稳定的硬度贡献(25 HV)。 TiC沉淀强化产生的贡献很小(3.5 HV)。该模型表明,由于失配应变大(1.34 GJ / m〜(3))和有限的潜在成核位点密度有限,在550°C等温回火期间形成的TiC沉淀的平衡体积分数不到1%。马氏体。该模型表明,回火马氏体钢的硬度可以通过降低失配应变来增加TiC沉淀物密度来增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号