...
首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 3: Aluminosilicates
【24h】

Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 3: Aluminosilicates

机译:纯净水和水溶液中硅酸盐和铝硅酸盐的冰核活性–第3部分:铝硅酸盐

获取原文
           

摘要

Aluminosilicates and quartz constitute the majority of airborne mineral dust. Despite similarities in structures and surfaces they differ greatly in terms of their ice nucleation (IN) efficiency. Here, we show that determining factors for their IN activity include surface ion exchange, NHsub3/sub or NH 4 + adsorption, and surface degradation due to the slow dissolution of the minerals. We performed immersion freezing experiments with the (Na-Ca)-feldspar andesine, the K-feldspar sanidine, the clay mineral kaolinite, the micas muscovite and biotite, and gibbsite and compare their IN efficiencies with those of the previously characterized K-feldspar microcline and quartz. Samples were suspended in pure water as well as in aqueous solutions of NHsub3/sub , (NHsub4/sub)sub2/subSOsub4/sub , NHsub4/subCl and Nasub2/subSOsub4/sub , with solute concentrations corresponding to water activities asubw/sub equal to 0.88–1.0. Using differential scanning calorimetry (DSC) on emulsified micron-sized droplets, we derived onset temperatures of heterogeneous ( Tsubhet/sub ) and homogeneous ( Tsubhom/sub ) freezing as well as heterogeneously frozen water volume fractions ( Fsubhet/sub ). Suspensions in pure water of andesine, sanidine and kaolinite yield Tsubhet/sub equal to 242.8, 241.2 and 240.3?K, respectively, while no discernable heterogeneous freezing signal is present in the case of the micas or gibbsite (i.e., T het ≈ T hom ≈ 237.0 K). The presence of NHsub3/sub and/or NH 4 + salts as solutes has distinct effects on the IN efficiency of most of the investigated minerals. When feldspars and kaolinite are suspended in very dilute solutions of NHsub3/sub or NH 4 + salts, Tsubhet/sub shifts to higher temperatures (by 2.6–7.0?K compared to the pure water suspension). Even micas and gibbsite develop weak heterogeneous freezing activities in ammonia solutions. Conversely, suspensions containing Nasub2/subSOsub4/sub cause the Tsubhet/sub of feldspars to clearly fall below the water-activity-based immersion freezing description ( Δasubw/sub= const.) even in very dilute Nasub2/subSOsub4/sub solutions, while Tsubhet/sub of kaolinite follows the Δasubw/sub= constant curve. The water activity determines how the freezing temperature is affected by solute concentration alone, i.e., if the surface properties of the ice nucleating particles are not affected by the solute. Therefore, the complex behavior of the IN activities can only be explained in terms of solute-surface-specific processes. We suggest that the immediate exchange of the native cations ( Ksup+/sup , Nasup+/sup , Casup2+/sup ) with protons, when feldspars are immersed in water, is a prerequisite for their high IN efficiency. On the other hand, excess cations from dissolved alkali salts prevent surface protonation, thus explaining the decreased IN activity in such solutions. In kaolinite, the lack of exchangeable cations in the crystal lattice explains why the IN activity is insensitive to the presence of alkali salts ( Δasubw/sub= const.). We hypothesize that adsorption of NHsub3/sub and NH 4 + on the feldspar surface rather than ion exchange is the main reason for the anomalous increased Tsubhet/sub in dilute solutions of NHsub3/sub or NH 4 + salts. This is supported by the response of kaolinite to NHsub3/sub or NH 4 + , despite lacking exchangeable ions. Finally, the dissolution of feldspars in water or solutions leads to depletion of Al and formation of an amorphous layer enriched in Si. This hampers the IN activity of andesine the most, followed by sanidine, then eventually microcline, the least soluble feldspar.
机译:铝硅酸盐和石英构成了空气中矿物粉尘的大部分。尽管在结构和表面上有相似之处,但它们的成核效率却大不相同。在这里,我们表明,决定其IN活性的因素包括表面离子交换,NH 3 或NH 4 +吸附以及由于矿物缓慢溶解而引起的表面降解。我们进行了(Na-Ca)长石安山药,K长石山尼定,粘土矿物高岭石,云母白云母和黑云母以及三水铝矿的浸没冷冻实验,并将它们的IN效率与先前表征的K长石微斜率进行了比较。和石英。将样品悬浮在纯水中以及NH 3 ,(NH 4 2 SO 4 ,NH 4 Cl和Na 2 SO 4 ,与水活度a w 对应的溶质浓度等于0.88–1.0。使用差示扫描量热法(DSC)对乳化的微米级液滴进行计算,我们得出了异质(T het )和均质(T hom )冻结以及异质冻结的起始温度水体积分数(F het )。在纯水中的山药碱,山梨酸和高岭石悬浮液的T het 分别等于242.8、241.2和240.3?K,而在云母或三水铝石的情况下则没有明显的异质冻结信号(即,T het≈T hom≈237.0 K)。 NH 3 和/或NH 4 +盐作为溶质的存在对大多数研究矿物的IN效率具有明显的影响。当长石和高岭石悬浮在非常稀的NH 3 或NH 4 +盐溶液中时,T het 转变为更高的温度(比纯净的高2.6–7.0?K)水悬浮液)。甚至云母和三水铝石在氨溶液中也会产生较弱的异质冷冻活性。相反,含有Na 2 SO 4 的悬浮液会使长石的T het 明显低于基于水活度的浸没冻结描述(Δa w = const。),即使在非常稀的Na 2 SO 4 溶液中,高岭石的T het 也遵循Δa w =恒定曲线。水分活度决定了冷冻温度如何仅受溶质浓度的影响,即,冰成核颗粒的表面性质是否不受溶质的影响。因此,只能根据溶质表面特定的过程来解释IN活动的复杂行为。我们建议将长石浸入质子后,立即与质子交换天然阳离子(K + ,Na + ,Ca 2 + )水是实现高IN效率的先决条件。另一方面,来自溶解的碱金属盐的过量阳离子会阻止表面质子化,因此可以解释这种溶液中IN活性降低。在高岭石中,晶格中缺乏可交换阳离子,这解释了为什么IN活性对碱金属盐(Δa w =常数)的存在不敏感。我们假设,在长石表面吸附而不是离子交换的是NH 3 和NH 4 +,这是NH 稀溶液中T het 异常增加的主要原因。 > 3 或NH 4 +盐。尽管缺乏可交换离子,高岭石对NH 3 或NH 4 +的响应也支持了这一点。最后,长石在水中或溶液中的溶解会导致Al耗竭并形成富含Si的非晶层。这会最大程度地阻碍安定氨酸的IN活性,其次是山梨糖苷,最后是微线,最不易溶解的长石。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号