首页> 外文期刊>Annales Geophysicae >Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: effect of precipitation-induced enhancement of the ionospheric Pedersen conductivity
【24h】

Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: effect of precipitation-induced enhancement of the ionospheric Pedersen conductivity

机译:木星中层磁层中的磁层-电离层耦合电流:降水诱导的电离层Pedersen电导率增强效应

获取原文
           

摘要

We consider the effect of precipitation-induced enhancement of the Jovian ionosphericPedersen conductivity on the magnetosphere-ionosphere coupling current system which isassociated with the breakdown of the corotation of iogenic plasma in Jupiter's middle magnetosphere.In previous studies the Pedersen conductivity has been taken to be simply a constant, while it isexpected to be significantly enhanced in the regions of upward-directed auroral field-alignedcurrent, implying downward precipitating electrons. We develop an empirical model of themodulation of the Pedersen conductivity with field-aligned current density based on the modellingresults of Millward et al. and compute the currents flowing in the systemwith the conductivity self-consistently dependent on the auroral precipitation. In addition, weconsider two simplified models of the conductivity which provide an insight into the behaviour ofthe solutions. We compare the results to those obtained when the conductivity is taken to beconstant, and find that the empirical conductivity model helps resolve some outstandingdiscrepancies between theory and observation of the plasma angular velocity and current system.Specifically, we find that the field-aligned current is concentrated in a peak of magnitude ~0.25µAm-2in the inner region of the middle magnetosphere at ~20 RJ, rather than being more uniformlydistributed as found with constant conductivity models. This peak maps to ~17° in the ionosphere,and is consistent with the position of the main oval auroras. The energy flux associated with thefield-aligned current is ~10mWm-2 (corresponding to a UV luminosity of ~100kR), in a region~0.6° in width, and the Pedersen conductivity is elevated from a background of ~0.05mho to~0.7mho. Correspondingly, the total equatorial radial current increases greatly in the region ofpeak field-aligned current, and plateaus with increasing distance thereafter. This form is consistentwith the observed profile of the current derived from Galileo magnetic field data. In addition, wefind that the solutions using the empirical conductivity model produce an angular velocity profilewhich maintains the plasma near to rigid corotation out to much further distances than the constantconductivity model would suggest. Again, this is consistent with observations. Ourresultstherefore suggest that, while the constant conductivity solutions provide an important indicationthat the main oval is indeed a result of the breakdown of the corotation of iogenic plasma, they do notexplain the details of the observations. In order to resolve some of these discrepancies, one musttake into account the elevation of the Pedersen conductivity as a result of auroral electronprecipitation.Key words. Magnetospheric physics (current systems,magnetosphere-ionosphere interactions, planetary magnetospheres)70d
机译:我们考虑了降水诱导的木星电离层皮德森电导率的增加对磁层-电离层耦合电流系统的影响,该系统与木星中磁层中等离子等离子体同向旋转的破坏有关。在以前的研究中,皮德森电导率被简单地认为是该常数是恒定的,而预计在向上定向的极光场取向电流区域会显着增强,这意味着向下沉淀电子。我们根据Millward等人的建模结果,开发了具有场对准电流密度的Pedersen电导率调制的经验模型。并计算电导率与极光降水量自洽相关的系统中流动的电流。此外,我们考虑了两个简化的电导率模型,这些模型提供了对溶液行为的深入了解。我们将结果与以电导率定为常数时获得的结果进行了比较,发现经验电导率模型有助于解决理论和等离子角速度和电流系统观测之间的一些突出差异。集中在中磁层的内部区域在〜20 R J 处,峰值为〜0.25µAm -2 ,而不是更大恒定电导率模型中发现的均匀分布。该峰在电离层映射为〜17°,并且与主要椭圆极光的位置一致。与场对准电流相关的能量通量为〜10mWm -2 (对应于〜100kR的UV发光度),宽度约为0.6°,Pedersen电导率从背景升高〜0.05mho至〜0.7mho。相应地,总的赤道径向电流在峰值场对准电流的区域中大大增加,并且此后随着距离的增加而趋于平稳。这种形式与从伽利略磁场数据得出的电流的观测轮廓一致。此外,我们发现,使用经验电导率模型的解决方案会产生角速度曲线,该角速度谱将使等离子接近于刚性同向旋转的距离比恒定电导率模型所暗示的要远得多。同样,这与观察结果一致。因此,我们的结果表明,尽管恒定电导率溶液提供了一个重要的指示,即主要的椭圆形确实是同质血浆同向分解的结果,但它们并未解释观察的细节。为了解决其中的一些差异,必须考虑到由于极光电子沉淀而引起的Pedersen电导率的升高。 关键词。磁层物理学(电流系统,磁层-电离层相互作用,行星磁层)70d

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号