...
首页> 外文期刊>Acta polytechnica >MOONLIGHT: A NEW LUNAR LASER RANGING RETROREFLECTOR AND THE LUNAR GEODETIC PRECESSION
【24h】

MOONLIGHT: A NEW LUNAR LASER RANGING RETROREFLECTOR AND THE LUNAR GEODETIC PRECESSION

机译:月光:一种新型的月球激光测距反射器和月球大地测量

获取原文
           

摘要

Since the 1970s Lunar Laser Ranging (LLR) to the Apollo Cube Corner Retroreflector (CCR) arrays (developed by the University of Maryland, UMD) supplied almost all significant tests of General Relativity (Alley et al., 1970; Chang et al., 1971; Bender et al.,1973): possible changes in the gravitational constant, gravitational self-energy, weak equivalence principle, geodetic precession, inverse-square force-law. The LNF group, in fact, has just completed a new measurement of the lunar geodetic precession with Apollo array, with accuracy of 9 × 10?3, comparable to the best measurement to date. LLR has also provided significant information on the composition and origin of the moon. This is the only Apollo experiment still in operation. In the 1970s Apollo LLR arrays contributed a negligible fraction of the ranging error budget. Since the ranging capabilities of ground stations improved by more than two orders of magnitude, now, because of the lunar librations, Apollo CCR arrays dominate the error budget. With the project MoonLIGHT (Moon Laser Instrumentation for General relativity High-accuracy Tests), in 2006 INFN-LNF joined UMD in the development and test of a new-generation LLR payload made by a single, large CCR (100mm diameter) unaffected by the effect of librations. With MoonLIGHT CCRs the accuracy of the measurement of the lunar geodetic precession can be improved up to a factor 100 compared to Apollo arrays. From a technological point of view, INFN-LNF built and is operating a new experimental apparatus (Satellite/lunar laser ranging Characterization Facility, SCF) and created a new industry-standard test procedure (SCF-Test) to characterize and model the detailed thermal behavior and the optical performance of CCRs in accurately laboratory-simulated space conditions, for industrial and scientific applications. Our key experimental innovation is the concurrent measurement and modeling of the optical Far Field Diffraction Pattern (FFDP) and the temperature distribution of retroreflector payloads under thermal conditions produced with a close-match solar simulator. The apparatus includes infrared cameras for non-invasive thermometry, thermal control and real-time payload movement to simulate satellite orientation on orbit with respect to solar illumination and laser interrogation beams. These capabilities provide: unique pre-launch performance validation of the space segment of LLR/SLR (Satellite Laser Ranging); retroreflector design optimization to maximize ranging efficiency and signal-to-noise conditions in daylight. Results of the SCF-Test of our CCR payload will be presented. Negotiations are underway to propose our payload and SCF-Test services for precision gravity and lunar science measurements with next robotic lunar landing missions. In particular, a scientific collaboration agreement was signed on Jan. 30, 2012, by D. Currie, S. Dell’Agnello and the Japanese PI team of the LLR instrument of the proposed SELENE-2 mission by JAXA (Registered with INFN Protocol n. 0000242-03/Feb/2012). The agreement foresees that, under no exchange of funds, the Japanese single, large, hollow LLR reflector will be SCF-Tested and that MoonLIGHT will be considered as backup instrument.
机译:自1970年代到阿波罗立方角后向反射器(CCR)阵列(由马里兰大学UMD开发)的月球激光测距(LLR)提供了几乎所有的广义相对论测试(Alley等,1970; Chang等, 1971; Bender等,1973):重力常数,重力自能,弱当量原理,大地运动,反平方力定律的可能变化。实际上,LNF小组刚刚用Apollo阵列完成了对月球大地岁差的新测量,精度为9×10?3,可与迄今为止的最佳测量相媲美。 LLR还提供了有关月球组成和起源的重要信息。这是唯一仍在运行的阿波罗实验。在1970年代,阿波罗LLR阵列对测距误差预算的贡献可忽略不计。由于地面站的测距能力提高了两个数量级以上,现在,由于月球的释放,Apollo CCR阵列主导了误差预算。借助MoonLIGHT(用于广义相对论高精度测​​试的月亮激光仪器)项目,INFN-LNF于2006年与UMD一起开发和测试了新一代LLR有效载荷,该载荷由单个大型CCR(直径100mm)制成,不受CRF影响。解放的影响。与Apollo阵列相比,借助MoonLIGHT CCR,可以将月球大地前倾的测量精度提高到100倍。从技术角度来看,INFN-LNF建立并正在运行一种新的实验设备(卫星/月球激光测距表征设施,SCF),并创建了一种新的行业标准测试程序(SCF-Test)来表征和建模详细的热在工业和科学应用中,CCR在精确的实验室模拟空间条件下的行为和光学性能。我们的关键实验创新是在紧密匹配的太阳能模拟器产生的热条件下,同时测量和建模光学远场衍射图(FFDP)以及后向反射器有效载荷的温度分布。该设备包括用于非侵入式测温,热控制和实时有效载荷移动的红外热像仪,以模拟卫星相对于太阳照明和激光询问光束在轨道上的定向。这些功能提供:对LLR / SLR(卫星激光测距)的空间部分进行独特的发射前性能验证;后向反射器设计优化,可在日光下最大化测距效率和信噪比条件。将显示我们CCR有效负载的SCF测试结果。正在进行谈判,以提出我们的有效载荷和SCF测试服务,以进行下一次机器人登月任务的精确重力和登月科学测量。特别是,D。Currie,S。Dell'Agnello和JAXA拟议的SELENE-2任务的LLR仪器的日本PI团队于2012年1月30日签署了一项科学合作协议(已在INFN协议n中注册0000242-03 / Feb / 2012)。该协议预计,在没有资金交换的情况下,日本的单个大型空心LLR反射镜将经过SCF测试,并且MoonLIGHT将被视为备用仪器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号