首页> 外文期刊>Computational and Structural Biotechnology Journal >{TRIBOLOGY} {OF} BIO-INSPIRED {NANOWRINKLED} {FILMS} {ON} {ULTRASOFT} {SUBSTRATES}
【24h】

{TRIBOLOGY} {OF} BIO-INSPIRED {NANOWRINKLED} {FILMS} {ON} {ULTRASOFT} {SUBSTRATES}

机译:{摩擦学} {OF}受生物启发{NANOWRINKLED} {FILMS} {ON} {ULTRASOFT} {SUBSTRATES}

获取原文
           

摘要

Biomimetic design of new materials uses nature as antetype, learning from billions of years of evolution. This work emphasizes the mechanical and tribological properties of skin, combining both hardness and wear resistance of its surface (the stratum corneum) with high elasticity of the bulk (epidermis, dermis, hypodermis). The key for combination of such opposite properties is wrinkling, being consequence of intrinsic stresses in the bulk (soft tissue): Tribological contact to counterparts below the stress threshold for tissue trauma occurs on the thick hard stratum corneum layer pads, while tensile loads smooth out wrinkles in between these pads. Similar mechanism offers high tribological resistance to hard films on soft, flexible polymers, which is shown for diamond-like carbon (DLC) and titanium nitride thin films on ultrasoft polyurethane and harder polycarbonate substrates. The choice of these two compared substrate materials will show that ultra-soft substrate materials are decisive for the distinct tribological material. Hierarchical wrinkled structures of films on these substrates are due to high intrinsic compressive stress, which evolves during high energetic film growth. Incremental relaxation of these stresses occurs by compound deformation of film and elastic substrate surface, appearing in hierarchical nano-wrinkles. Nano-wrinkled topographies enable high elastic deformability of thin hard films, while overstressing results in zigzag film fracture along larger hierarchical wrinkle structures. Tribologically, these fracture mechanisms are highly important for ploughing and sliding of sharp and flat counterparts on hard-coated ultra-soft substrates like polyurethane. Concentration of polyurethane deformation under the applied normal loads occurs below these zigzag cracks. Unloading closes these cracks again. Even cyclic testing do not lead to film delamination and retain low friction behavior, if the adhesion to the substrate is high and the initial friction coefficient of the film against the sliding counterpart low, e.g. found for DLC.
机译:新材料的仿生设计以自然为原型,从数十亿年的进化中汲取了教训。这项工作强调了皮肤的机械和摩擦学特性,将其表面(角质层)的硬度和耐磨性与整体(表皮,真皮,皮下组织)的高弹性相结合。将这种相反特性组合在一起的关键是起皱,这是本体(软组织)中固有应力的结果:在厚组织的硬质角质层垫上发生与组织创伤的应力阈值以下的对应部分的摩擦接触,而拉伸载荷得以消除这些垫之间有皱纹。类似的机理对柔软,柔软的聚合物上的硬膜具有很高的耐磨性,对于超软聚氨酯和较硬的聚碳酸酯基材上的类金刚石碳(DLC)和氮化钛薄膜显示出类似的机理。这两种比较的基材的选择将表明,超软基材对于不同的摩擦学材料具有决定性作用。这些基材上薄膜的分层起皱结构归因于高固有压缩应力,该应力在高能薄膜生长过程中演化。这些应力的增量松弛是通过薄膜和弹性基材表面的复合变形而发生的,出现在分层的纳米皱纹中。纳米皱纹的形貌使硬质薄膜具有较高的弹性变形能力,而过应力会导致锯齿形薄膜沿较大的分层皱纹结构断裂。在摩擦学上,这些断裂机理对于在硬涂层超软基材(如聚氨酯)上对尖锐和平坦的对应物进行犁打和滑动非常重要。在这些锯齿形裂纹的下方,在施加的法向载荷下发生了聚氨酯变形的集中。卸载再次关闭了这些裂缝。如果对基材的粘附力高且薄膜相对于滑动对应物的初始摩擦系数也很低,例如即使是周期性测试,也不会导致薄膜分层并保持低摩擦性能。为DLC找到。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号