...
首页> 外文期刊>BMC Microbiology >Genomic characterization of plant cell wall degrading enzymes and in silico analysis of xylanses and polygalacturonases of Fusarium virguliforme
【24h】

Genomic characterization of plant cell wall degrading enzymes and in silico analysis of xylanses and polygalacturonases of Fusarium virguliforme

机译:植物细胞壁降解酶的基因组表征和镰刀菌木聚糖酶和多半乳糖苷酶的计算机分析

获取原文
           

摘要

Background Plant cell wall degrading enzymes (PCWDEs) are a subset of carbohydrate-active enzymes (CAZy) produced by plant pathogens to degrade plant cell walls. To counteract PCWDEs, plants release PCWDEs inhibitor proteins (PIPs) to reduce their impact. Several transgenic plants expressing exogenous PIPs that interact with fungal glycoside hydrolase (GH)11-type xylanases or GH28-type polygalacturonase (PG) have been shown to enhance disease resistance. However, many plant pathogenic Fusarium species were reported to escape PIPs inhibition. Fusarium virguliforme is a soilborne pathogen that causes soybean sudden death syndrome (SDS). Although the genome of F. virguliforme was sequenced, there were limited studies focused on the PCWDEs of F. virguliforme . Our goal was to understand the genomic CAZy structure of F. viguliforme , and determine if exogenous PIPs could be theoretically used in soybean to enhance resistance against F. virguliforme. Results F. virguliforme produces diverse CAZy to degrade cellulose and pectin, similar to other necrotorphic and hemibiotrophic plant pathogenic fungi. However, some common CAZy of plant pathogenic fungi that catalyze hemicellulose, such as GH29, GH30, GH44, GH54, GH62, and GH67, were deficient in F. virguliforme . While the absence of these CAZy families might be complemented by other hemicellulases, F. virguliforme contained unique families including GH131, polysaccharide lyase (PL) 9, PL20, and PL22 that were not reported in other plant pathogenic fungi or oomycetes. Sequence analysis revealed two GH11 xylanases of F. virguliforme , FvXyn11A and FvXyn11B, have conserved residues that allow xylanase inhibitor protein I (XIP-I) binding. Structural modeling suggested that FvXyn11A and FvXyn11B could be blocked by XIP-I that serves as good candidate for developing transgenic soybeans. In contrast, one GH28 PG, FvPG2, contains an amino acid substitution that is potentially incompatible with the bean polygalacturonase-inhibitor protein II (PvPGIP2). Conclusions Identification and annotation of CAZy provided advanced understanding of genomic composition of PCWDEs in F. virguliforme . Sequence and structural analyses of FvXyn11A and FvXyn11B suggested both xylanases were conserved in residues that allow XIP-I inhibition, and expression of both xylanases were detected during soybean roots infection. We postulate that a transgenic soybean expressing wheat XIP-I may be useful for developing root rot resistance to F. virguliforme .
机译:背景技术植物细胞壁降解酶(PCWDEs)是植物病原体产生的降解植物细胞壁的碳水化合物活性酶(CAZy)的子集。为了抵消PCWDE,植物释放PCWDE抑制剂蛋白(PIP)以减少其影响。已显示出表达与真菌糖苷水解酶(GH)11型木聚糖酶或GH28型聚半乳糖醛酸酶(PG)相互作用的外源PIP的几种转基因植物可增强抗病性。然而,据报道许多植物病原性镰刀菌物种逃避了PIPs抑制。镰孢镰刀菌是一种土壤传播的病原体,可导致大豆猝死综合征(SDS)。尽管对维氏假单胞菌的基因组进行了测序,但针对维氏假单胞菌的PCWDE的研究很少。我们的目标是了解小菜蛾的基因组CAZy结构,并确定理论上是否可将外源PIP用于大豆以增强对小菜蛾的抗性。结果与其他坏死性和半生营养性植物病原真菌相似,维氏乳杆菌产生多种CAZy降解纤维素和果胶。但是,一些催化半纤维素的植物病原真菌常见的CAZy,例如GH。,GH29,GH30,GH44,GH54,GH62和GH67,都缺乏维氏乳杆菌。虽然这些CAZy家族的缺失可能会被其他半纤维素酶所弥补,但维氏假单胞菌包含独特的家族,包括GH131,多糖裂解酶(PL)9,PL20和PL22,在其他植物病原性真菌或卵菌中没有报道。序列分析显示,F。virguliforme的两个GH11木聚糖酶FvXyn11A和FvXyn11B具有保守的残基,允许木聚糖酶抑制剂蛋白I(XIP-1)结合。结构模型表明,FvXyn11A和FvXyn11B可以被XIP-1阻断,而XIP-1是开发转基因大豆的良好候选者。相反,一个GH28 PG FvPG2含有一个可能与豆类聚半乳糖醛酸酶抑制剂蛋白II(PvPGIP2)不相容的氨基酸取代。结论CAZy的鉴定和注释提供了对维尔纽斯菌中PCWDEs基因组组成的进一步认识。 FvXyn11A和FvXyn11B的序列和结构分析表明,两种木聚糖酶均在允许XIP-1抑制的残基中保守,并且在大豆根感染期间检测到两种木聚糖酶的表达。我们假设表达小麦XIP-1的转基因大豆可能对发展对维氏乳杆菌的根腐病具有抗性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号