首页> 外文期刊>BMC Systems Biology >Period doubling cascades of limit cycles in cardiac action potential models as precursors to chaotic early Afterdepolarizations
【24h】

Period doubling cascades of limit cycles in cardiac action potential models as precursors to chaotic early Afterdepolarizations

机译:心脏动作电位模型中极限循环的周期倍增级联作为混沌早期去极化的前兆

获取原文
           

摘要

Background Early afterdepolarizations (EADs) are pathological voltage oscillations during the repolarization phase of cardiac action potentials (APs). EADs are caused by drugs, oxidative stress or ion channel disease, and they are considered as potential precursors to cardiac arrhythmias in recent attempts to redefine the cardiac drug safety paradigm. The irregular behaviour of EADs observed in experiments has been previously attributed to chaotic EAD dynamics under periodic pacing, made possible by a homoclinic bifurcation in the fast subsystem of the deterministic AP system of differential equations. Results In this article we demonstrate that a homoclinic bifurcation in the fast subsystem of the action potential model is neither a necessary nor a sufficient condition for the genesis of chaotic EADs. We rather argue that a cascade of period doubling (PD) bifurcations of limit cycles in the full AP system paves the way to chaotic EAD dynamics across a variety of models including a) periodically paced and spontaneously active cardiomyocytes, b) periodically paced and non-active cardiomyocytes as well as c) unpaced and spontaneously active cardiomyocytes. Furthermore, our bifurcation analysis reveals that chaotic EAD dynamics may coexist in a stable manner with fully regular AP dynamics, where only the initial conditions decide which type of dynamics is displayed. Conclusions EADs are a potential source of cardiac arrhythmias and hence are of relevance both from the viewpoint of drug cardiotoxicity testing and the treatment of cardiomyopathies. The model-independent association of chaotic EADs with period doubling cascades of limit cycles introduced in this article opens novel opportunities to study chaotic EADs by means of bifurcation control theory and inverse bifurcation analysis. Furthermore, our results may shed new light on the synchronization and propagation of chaotic EADs in homogeneous and heterogeneous multicellular and cardiac tissue preparations.
机译:背景技术早期后去极化(EAD)是心脏动作电位(APs)复极化阶段的病理性电压振荡。 EAD是由药物,氧化应激或离子通道疾病引起的,在最近重新定义心脏药物安全性范例的尝试中,EAD被认为是心律不齐的潜在先兆。在实验中观察到的EAD的不规则行为先前归因于周期性起搏下的混沌EAD动力学,这是由确定性微分方程AP系统的快速子系统中的同宿分叉导致的。结果在本文中,我们证明了动作电位模型快速子系统中的同宿分叉既不是混沌EAD产生的必要条件,也不是充分条件。我们宁可争辩说,完整AP系统中极限周期的级联周期倍增(PD)分叉为各种模型的混沌EAD动力学铺平了道路,包括a)周期性起搏和自发活动的心肌细胞,b)周期性起搏和非周期性活跃的心肌细胞以及c)无节奏和自发活跃的心肌细胞。此外,我们的分叉分析表明,混沌的EAD动力学可能以稳定的方式与完全规则的AP动力学共存,其中仅初始条件决定了显示哪种类型的动力学。结论EADs是心律失常的潜在来源,因此,从药物心脏毒性测试和心肌病的治疗角度来看,EADs具有相关性。本文介绍的与模型无关的混沌EAD与极限周期的倍增级联级联为通过分叉控制理论和反向分叉分析研究混沌EAD提供了新的机会。此外,我们的结果可能为均匀和异质多细胞和心脏组织制剂中混沌EAD的同步和传播提供新的思路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号