...
首页> 外文期刊>BMC Systems Biology >An efficient graph theory based method to identify every minimal reaction set in a metabolic network
【24h】

An efficient graph theory based method to identify every minimal reaction set in a metabolic network

机译:一种基于有效图论的方法来识别代谢网络中的每个最小反应集

获取原文
           

摘要

Background Development of cells with minimal metabolic functionality is gaining importance due to their efficiency in producing chemicals and fuels. Existing computational methods to identify minimal reaction sets in metabolic networks are computationally expensive. Further, they identify only one of the several possible minimal reaction sets. Results In this paper, we propose an efficient graph theory based recursive optimization approach to identify all minimal reaction sets. Graph theoretical insights offer systematic methods to not only reduce the number of variables in math programming and increase its computational efficiency, but also provide efficient ways to find multiple optimal solutions. The efficacy of the proposed approach is demonstrated using case studies from Escherichia coli and Saccharomyces cerevisiae. In case study 1, the proposed method identified three minimal reaction sets each containing 38 reactions in Escherichia coli central metabolic network with 77 reactions. Analysis of these three minimal reaction sets revealed that one of them is more suitable for developing minimal metabolism cell compared to other two due to practically achievable internal flux distribution. In case study 2, the proposed method identified 256 minimal reaction sets from the Saccharomyces cerevisiae genome scale metabolic network with 620 reactions. The proposed method required only 4.5?hours to identify all the 256 minimal reaction sets and has shown a significant reduction (approximately 80%) in the solution time when compared to the existing methods for finding minimal reaction set. Conclusions Identification of all minimal reactions sets in metabolic networks is essential since different minimal reaction sets have different properties that effect the bioprocess development. The proposed method correctly identified all minimal reaction sets in a both the case studies. The proposed method is computationally efficient compared to other methods for finding minimal reaction sets and useful to employ with genome-scale metabolic networks.
机译:背景技术具有最小的代谢功能的细胞的开发由于其生产化学物质和燃料的效率而变得越来越重要。现有的用于识别代谢网络中最小反应集的计算方法在计算上是昂贵的。此外,它们仅识别几种可能的最小反应组之一。结果在本文中,我们提出了一种基于有效图论的递归优化方法来识别所有最小反应集。图形理论的见解提供了系统的方法,不仅可以减少数学编程中的变量数量并提高其计算效率,而且还提供了找到多种最优解的有效方法。利用来自大肠杆菌和酿酒酵母的案例研究证明了该方法的有效性。在案例研究1中,所提出的方法确定了三个最小反应集,每个最小反应集包含大肠杆菌中央代谢网络中的38个反应和77个反应。对这三个最小反应集的分析表明,由于实际上可实现的内部通量分布,与其他两个反应集相比,其中一个更适合于开发最小代谢细胞。在案例研究2中,所提出的方法从啤酒酵母基因组规模代谢网络中识别出256个最小反应集,共620个反应。所提出的方法仅需要4.5?小时即可识别出全部256个最小反应组,并且与现有的寻找最小反应组的方法相比,其溶解时间显着减少(约80%)。结论识别代谢网络中所有最小反应集至关重要,因为不同的最小反应集具有影响生物过程发展的不同特性。在两个案例研究中,所提出的方法正确地识别了所有最小反应集。与寻找最小反应集的其他方法相比,所提出的方法在计算上是有效的,并且可用于基因组规模的代谢网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号