首页> 外文期刊>BMC Medical Informatics and Decision Making >On the interpretability of machine learning-based model for predicting hypertension
【24h】

On the interpretability of machine learning-based model for predicting hypertension

机译:基于机器学习的高血压预测模型的可解释性

获取原文
           

摘要

Although complex machine learning models are commonly outperforming the traditional simple interpretable models, clinicians find it hard to understand and trust these complex models due to the lack of intuition and explanation of their predictions. The aim of this study to demonstrate the utility of various model-agnostic explanation techniques of machine learning models with a case study for analyzing the outcomes of the machine learning random forest model for predicting the individuals at risk of developing hypertension based on cardiorespiratory fitness data. The dataset used in this study contains information of 23,095 patients who underwent clinician-referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 10-year follow-up. Five global interpretability techniques (Feature Importance, Partial Dependence Plot, Individual Conditional Expectation, Feature Interaction, Global Surrogate Models) and two local interpretability techniques (Local Surrogate Models, Shapley Value) have been applied to present the role of the interpretability techniques on assisting the clinical staff to get better understanding and more trust of the outcomes of the machine learning-based predictions. Several experiments have been conducted and reported. The results show that different interpretability techniques can shed light on different insights on the model behavior where global interpretations can enable clinicians to understand the entire conditional distribution modeled by the trained response function. In contrast, local interpretations promote the understanding of small parts of the conditional distribution for specific instances. Various interpretability techniques can vary in their explanations for the behavior of the machine learning model. The global interpretability techniques have the advantage that it can generalize over the entire population while local interpretability techniques focus on giving explanations at the level of instances. Both methods can be equally valid depending on the application need. Both methods are effective methods for assisting clinicians on the medical decision process, however, the clinicians will always remain to hold the final say on accepting or rejecting the outcome of the machine learning models and their explanations based on their domain expertise.
机译:尽管复杂的机器学习模型通常优于传统的简单可解释模型,但是由于缺乏直觉和对预测的解释,临床医生发现难以理解和信任这些复杂模型。这项研究的目的是通过案例分析来证明机器学习模型的各种与模型无关的解释技术的实用性,并通过案例分析来分析机器学习随机森林模型的结果,从而基于心肺健康数据预测有患高血压风险的个体。本研究中使用的数据集包含23,095例患者的信息,这些患者在1991年至2009年间接受了Henry Ford Health Systems的临床医生称为运动踏车压力测试,并进行了完整的10年随访。五种全局可解释性技术(特征重要性,部分依赖图,个体条件期望,特征交互,全局替代模型)和两种局部可解释性技术(局部替代模型,Shapley值)已被应用,以说明可解释性技术在协助解决方案中的作用。临床人员可以更好地理解和信任基于机器学习的预测结果。已经进行并报道了一些实验。结果表明,不同的可解释性技术可以揭示对模型行为的不同见解,其中全局解释可以使临床医生了解由训练后的响应函数建模的整个条件分布。相反,局部解释可促进对特定实例的条件分布的一小部分的理解。各种可解释性技术对机器学习模型的行为的解释可能会有所不同。全局可解释性技术的优势在于可以将其推广到整个人群中,而本地可解释性技术则侧重于在实例级别进行解释。根据应用程序的需要,两种方法都可以同样有效。两种方法都是协助临床医生进行医疗决策过程的有效方法,但是,临床医生将始终保留接受或拒绝机器学习模型的结果以及基于其领域专业知识的解释的最终决定权。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号