...
首页> 外文期刊>Computers & geosciences >From core-scale experiment to reservoir-scale modeling: A scale-up approach to investigate reaction-induced permeability evolution of CO_2 storage reservoir and caprock at a U.S. CO_2 storage site
【24h】

From core-scale experiment to reservoir-scale modeling: A scale-up approach to investigate reaction-induced permeability evolution of CO_2 storage reservoir and caprock at a U.S. CO_2 storage site

机译:从岩心规模实验到储层规模建模:一种放大方法,研究美国CO_2储藏场所CO_2储层和盖层的反应诱导渗透率演化

获取原文
获取原文并翻译 | 示例
           

摘要

Mineral dissolution and secondary mineral precipitation can cause porosity and permeability changes of CO2 storage reservoirs and caprocks after injection of CO2. In this paper, a 3-step approach (core-scale experiment - core-scale modeling - reservoir-scale modeling) is developed to simulate reservoir-scale porosity and permeability evolution of CO2 storage formation and caprock at a model CO2 storage site. The model site is based on characteristics of a real site in Mississippi, USA. Important chemical and permeability modeling parameters in the reservoir-scale model are validated by core-scale experimental and reactive transport modeling results. The reservoir-scale model predicts a maximum 3.2% permeability increase of the CO2 storage formation and a maximum 1.1% permeability increase of the caprock after 1000 years of exposure to CO2-rich brine, while the core-scale model predicts 7% permeability decrease for a small CO2 storage formation core and 296% permeability increase for a small caprock core after 180-day exposure to CO2-rich brine. The discrepancy between permeability results of reservoir-scale model and core-scale model is attributed to strong pH buffering effect of CO2 storage formation with large mass of H+-consuming minerals. Therefore, using core-scale experiments/models only is not sufficient to elucidate reservoir-scale permeability evolution. Variations of key model parameters have a small effect on permeability evolution of both CO2 storage formation and caprock, except for variations of K-eq (SiO2 (am)) and the exponent n in permeability-porosity correlation. SiO2 (am) is a key mineral that governs permeability evolution of CO2 storage formation and caprock, given the characteristics of the model CO2 storage site.
机译:注入矿物后,矿物的溶解和二次矿物的沉淀会引起二氧化碳储集层和盖层的孔隙度和渗透率变化。本文提出了一种三步法(岩心规模实验->岩心规模建模->储层规模建模)来模拟模型CO2储存地点的CO2储层和盖层的储层规模孔隙度和渗透率演化。 。该模型站点基于美国密西西比州一个真实站点的特征。储层规模模型中重要的化学和渗透率建模参数已通过岩心规模实验和反应输运模型结果进行了验证。在暴露于富含二氧化碳的盐水1000年后,油藏规模模型预测CO2储层形成的最大渗透率增加3.2%,盖岩最大渗透率增加1.1%,而岩心规模模型则预测:在暴露于富含CO2的盐水中180天后,较小的盖层岩心具有较小的CO2储存地层岩心,渗透率提高了296%。储层尺度模型与岩心尺度模型的渗透率结果之间的差异是由于大量消耗H +的矿物导致CO2储层形成的pH缓冲作用强。因此,仅使用岩心规模的实验/模型不足以阐明储层规模的渗透率演化。关键模型参数的变化对CO2储集层和盖层的渗透率演化影响很小,除了K-eq(SiO2(am))和渗透率-孔隙度相关指数n的变化。鉴于模型CO2储存地点的特征,SiO2(am)是控制CO2储存形成和盖层渗透性演变的关键矿物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号