首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >IPACS: Integrated Phase-Field Advanced Crack Propagation Simulator. An adaptive, parallel, physics-based-discretization phase-field framework for fracture propagation in porous media
【24h】

IPACS: Integrated Phase-Field Advanced Crack Propagation Simulator. An adaptive, parallel, physics-based-discretization phase-field framework for fracture propagation in porous media

机译:IPACS:集成的阶段现场高级裂缝传播模拟器。基于自适应,平行,物理的离散化阶段框架,用于多孔介质中的断裂传播

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we review and describe our computational framework for solving multiphysics phase-field fracture problems in porous media. Therein, the following five coupled nonlinear physical models are addressed: displacements (geo-mechanics), a phase-field variable to indicate the fracture position, a pressure equation (to describe flow), a proppant concentration equation, and/or a saturation equation for two-phase fracture flow, and finally a finite element crack width problem. The overall coupled problem is solved with a staggered solution approach, known in subsurface modeling as the fixed-stress iteration. A main focus is on physics-based discretizations. Galerkin finite elements are employed for the displacement-phase-field system and the crack width problem. Enriched Galerkin formulations are used for the pressure equation. Further enrichments using entropy-vanishing viscosity are employed for the proppant and/or saturation equations. A robust and efficient quasi-monolithic semi-smooth Newton solver, local mesh adaptivity, and parallel implementations allow for competitive timings in terms of the computational cost. Our framework can treat two-and three-dimensional realistic field and laboratory examples. The resulting program is an in-house code named IPACS (Integrated Phase-field Advanced Crack Propagation Simulator) and is based on the finite element library deal.II. Representative numerical examples are included in this document. (C) 2020 Elsevier B.V. All rights reserved.
机译:在这项工作中,我们审查并描述了求解多孔介质中的多体阶段骨折问题的计算框架。其中,以下五个耦合非线性物理模型得到解决:位移(地理机械),相位场变量,以指示断裂位置,压力方程(描述流程),支撑剂浓度方程和/或饱和方程对于两相骨折流动,最后是有限元裂缝宽度问题。通过交错的解决方案方法解决了整体耦合问题,以地下建模已知为固定应力迭代。主要重点是基于物理的离散化。 Galerkin有限元用于位移 - 阶段场系统和裂缝宽度问题。丰富的Galerkin配方用于压力方程。使用熵消失粘度的进一步富集用于支撑剂和/或饱和方程。一种稳健而有效的准单片半光滑牛顿求解器,局部网格适应性和并行实现,允许在计算成本方面实现竞争时间。我们的框架可以治疗双向和三维的现实领域和实验室示例。结果程序是名为IPACS的内部代码(集成阶段高级裂缝传播模拟器),并基于有限元库交易.II.本文档中包含代表性数值示例。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号