首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Finite element procedure and simulations for a multiphase phase field approach to martensitic phase transformations at large strains and with interfacial stresses
【24h】

Finite element procedure and simulations for a multiphase phase field approach to martensitic phase transformations at large strains and with interfacial stresses

机译:马氏体相变大应变和界面应力的多相相场方法的有限元程序和模拟

获取原文
获取原文并翻译 | 示例
       

摘要

A detailed finite element procedure for a new phase field approach (Basak and Levitas, 2018) to temperature-and stress induced multivariant martensitic transformations at large strains and with interfacial stresses is developed. A system with austenite and N martensitic variants is considered. N + 1 order parameters related to the transformation strains are used, one of which describes the austenite - martensite transformation; the other N order parameters describe N martensitic variants. Evolution of the order parameters is governed by coupled Ginzburg-Landau and mechanics equations. Assuming a non-monolithic strategy for solving the governing equations by using Newton's iterative method, a weak formulation with emphasis on the derivation of the tangent modulus has been presented. Notably, the fourth order tangent modulus for the equilibrium equations has a contribution not only from the elastic stresses but also from the structural interfacial stresses, which appears here for the first time. A second order backward difference scheme is used to discretize the time derivative in the Ginzburg-Landau equations. An adaptive time stepping is considered. A finite element code has been developed within an open source package deal.II for a system with austenite and two martensitic variants and used to solve three problems: (i) simple shear deformation of a rectangular parallelepiped with evolution of austenite and single martensitic variant; (ii) twinning in martensite and the effect of sample size on the twinned microstructures; (iii) a rectangular block under nanoindentation. The results for the first two problems describe the well-known analytical solutions. Two kinematic models (KMs) for the transformation deformation gradient tensor are used and the corresponding results are compared: KM-I represents a linear transformation rule in the Bain tensors and KM-II is an exponential-logarithmic type of transformation rule in the Bain tensors. The algorithm can naturally be extended for the study of phase transformations in multiphase solids, solidification, diffusive phase transitions, interaction between phase transformations and plasticity and/or fracture, etc. (C) 2018 Elsevier B.V. All rights reserved.
机译:开发了一种新的相场方法(Basak和Levitas,2018)的详细有限元程序,该方法用于在大应变和界面应力下温度和应力引起的多变量马氏体转变。考虑具有奥氏体和N个马氏体变体的系统。使用与转变应变有关的N +1阶参数,其中之一描述了奥氏体马氏体转变。其他N阶参数描述了N个马氏体变体。阶次参数的演化由耦合的Ginzburg-Landau和力学方程式控制。假定采用牛顿迭代法求解控制方程的非整体策略,提出了一种强调切线模量推导的弱公式。值得注意的是,平衡方程的四阶切线模量不仅来自弹性应力,而且还来自结构界面应力,这在这里是首次出现。二阶后向差分方案用于离散Ginzburg-Landau方程中的时间导数。考虑自适应时间步进。在一个开源软件包协议中已经开发了一个有限元代码。II用于具有奥氏体和两个马氏体变体的系统,并用于解决三个问题: (ii)马氏体中的孪晶以及样品尺寸对孪晶微观结构的影响; (iii)在纳米压痕下的矩形块。前两个问题的结果描述了众所周知的分析解决方案。使用了两个用于变形变形梯度张量的运动学模型(KMs),并比较了相应的结果:KM-I表示贝恩张量中的线性变换规则,而KM-II是贝恩张量中的指数对数类型的变换规则。该算法自然可以扩展到研究多相固体中的相变,凝固,扩散相变,相变与塑性和/或断裂之间的相互作用等。(C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号