...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An upwind cell centred Total Lagrangian finite volume algorithm for nearly incompressible explicit fast solid dynamic applications
【24h】

An upwind cell centred Total Lagrangian finite volume algorithm for nearly incompressible explicit fast solid dynamic applications

机译:迎风单元为中心的总拉格朗日有限体积算法,用于几乎不可压缩的显式快速固体动力学应用

获取原文
获取原文并翻译 | 示例
           

摘要

The paper presents a new computational framework for the numerical simulation of fast large strain solid dynamics, with particular emphasis on the treatment of near incompressibility. A complete set of first order hyperbolic conservation equations expressed in terms of the linear momentum and the minors of the deformation (namely the deformation gradient, its co-factor and its Jacobian), in conjunction with a polyconvex nearly incompressible constitutive law, is presented. Taking advantage of this elegant formalism, alternative implementations in terms of entropy-conjugate variables are also possible, through suitable symmetrisation of the original system of conservation variables. From the spatial discretisation standpoint, modern Computational Fluid Dynamics code "OpenFOAM" [http://www.openfoam.com/] is here adapted to the field of solid mechanics, with the aim to bridge the gap between computational fluid and solid dynamics. A cell centred finite volume algorithm is employed and suitably adapted. Naturally, discontinuity of the conservation variables across control volume interfaces leads to a Riemann problem, whose resolution requires special attention when attempting to model materials with predominant nearly incompressible behaviour (kappa/mu = 500). For this reason, an acoustic Riemann solver combined with a preconditioning procedure is introduced. In addition, a global a posteriori angular momentum projection procedure proposed in Haider et al. (2017) is also presented and adapted to a Total Lagrangian version of the nodal scheme of Kluth and Despres (2010) used in this paper for comparison purposes. Finally, a series of challenging numerical examples is examined in order to assess the robustness and applicability of the proposed methodology with an eye on large scale simulation in future works. (C) 2018 Elsevier B.Y. All rights reserved.
机译:本文为快速大应变固体动力学的数值模拟提供了一个新的计算框架,特别强调了近不可压缩性的处理。提出了一套完整的一阶双曲守恒方程组,该方程组以线性动量和变形的次要形式(即变形梯度,其辅因子及其雅可比定律)表示,并结合了一个几乎不压缩的多凸本构关系。利用这种优雅的形式主义,通过对守恒变量原始系统进行适当的对称化,在熵共轭变量方面的替代实现也是可能的。从空间离散的观点来看,现代计算流体动力学代码“ OpenFOAM” [http://www.openfoam.com/]在这里适用于固体力学领域,旨在弥合计算流体与固体之间的鸿沟动力学。采用并以细胞为中心的有限体积算法。自然,控制体积界面上守恒变量的不连续会导致黎曼问题,当尝试对具有几乎不可压缩的行为(kappa / mu> = 500)的材料进行建模时,其分辨率需要特别注意。因此,引入了结合预处理程序的声学黎曼求解器。此外,在Haider等人中提出了一种全局的后验角动量投影程序。 (2017)也被提出并适用于本文的Kluth和Despres(2010)的节点方案的总拉格朗日版本,用于比较。最后,研究了一系列具有挑战性的数值示例,以评估所提出方法的健壮性和适用性,并着眼于未来工作中的大规模仿真。 (C)2018年Elsevier B.Y.版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号