首页> 外文期刊>Computational Geosciences >Prediction of gas hydrate saturation using machine learning and optimal set of well-logs
【24h】

Prediction of gas hydrate saturation using machine learning and optimal set of well-logs

机译:使用机器学习和最优良好日志预测天然气水合物饱和度

获取原文
获取原文并翻译 | 示例
           

摘要

Resistivity and acoustic logs are widely used to estimate gas hydrate saturation in various sedimentary systems using one of the two popular methods ((1) acoustic velocity and (2) electrical resistivity), but the limitations of these two methods are often overlooked, which include (ⅰ) well-specific calibration of empirical exponents in the electrical resistivity method, (ⅱ) assumption of known pore morphology for gas hydrates in the acoustic velocity method, and (ⅲ) presence of unknown mineralogy and bulk modulus terms in the acoustic velocity method. NMR-density porosity-derived gas hydrate saturation based on the analysis of the transverse magnetization relaxation time (72) is considered the most precise method, but acquisition of NMR-based logs is limited at relatively recent drilled sites; additionally, its use in conventional oil and gas reservoirs is not that common due to higher cost and operational deployment limitations associated with acquiring NMR well-logs. This study proposes a new method that predicts gas hydrate saturation (S_h) for any well using porosity, bulk density, and compressional wave (P wave) velocity well-logs with neural network (or stochastic gradient descent regression) without any well-specific calibration and/or other aforementioned shortcomings of the existing methods. The method is developed by examining the underlying dependency between S_h and different combinations of well-logs, chosen from 6 routine logs, with 12 different machine learning (ML) algorithms. The accuracy of the proposed method in predicting S_h, is ~ 84%, which is better than the accuracy of seismic and electrical resistivity methods (≤ 75%) per the results reported by three different studies. The robustness of the method in the specific case of permafrost-associated gas hydrates is demonstrated with well-log data from two wells drilled on the Alaska North Slope.
机译:电阻率和声学日志广泛用于使用两种普遍的方法((1)声速度和(2)电阻率)中的一种估计各种沉积系统中的天然气水合物饱和度,但这两个方法的局限性常见于其包括(Ⅰ)电阻率法的实证指数校正校正,(Ⅱ)在声速法中的空气水合物中已知的孔隙形态的假设,以及(Ⅲ)在声速度法中存在未知矿物学和散装模量术语的存在。基于横向磁化弛豫时间(72)的分析的NMR密度孔隙率衍生的气体水合物饱和度被认为是最精确的方法,但是在相对近期钻孔场的基于NMR的原木采集是有限的;此外,由于与获取NMR良好的日志相关的成本和操作部署限制,它在传统的石油和气体储层中的使用并不常见。本研究提出了一种新方法,其使用孔隙率,堆积密度和压缩波(P波)速度良好的良好良好的良好良好地预测气体水合物饱和度(S_H),没有任何特定于良好的校准的神经网络(或随机梯度下降回归)和/或其他上述现有方法的缺点。该方法是通过检查S_H与井日志的不同组合的基础依赖来开发,从6个例行日志中选择,具有12种不同的机器学习(ML)算法。预测S_H的所提出方法的准确性为约84%,比三种不同研究报告的结果的地震和电阻率方法(≤75%)的准确性更好。通过在阿拉斯加北坡上钻井的井中的井数数据证明了在多年冻土相关气体水合物的特定情况下的方法的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号