首页> 外文期刊>Computational Geosciences >A supercoarsening multigrid method for poroelasticity in 3D coupled flow and geomechanics modeling
【24h】

A supercoarsening multigrid method for poroelasticity in 3D coupled flow and geomechanics modeling

机译:3D耦合流固力学建模中的超粗化多孔网格方法

获取原文
获取原文并翻译 | 示例
           

摘要

The Galerkin finite-element discretization of the force balance equation typically leads to large lin ear systems for geomechanical problems with realistic dimensions. In iteratively coupled flow and geome chanics modeling, a large linear system is solved at every timestep often multiple times during coupling iterations. The iterative solution of the linear system stemming from the poroelasticity equations constitutes the most time-consuming and memory-intensive com ponent of coupled modeling. Block Jacobi, LSOR, and Incomplete LU factorization are popular precondition ing techniques used for accelerating the iterative so lution of the poroelasticity linear systems. However, the need for more effective, efficient, and robust it erative solution techniques still remains especially for large coupled modeling problems requiring the solu tion of the poroelasticity system for a large number of timesteps. We developed a supercoarsening multigrid method (SCMG) which can be multiplicatively com bined with commonly used preconditioning techniques. SCMG has been tested on a variety of coupled flow and geomechanics problems involving single-phase de pletion and multiphase displacement of in-situ hydro carbons, CO_2 injection, and extreme material property contrasts. Our analysis indicates that the SCMG con sistently improves the convergence properties of the linear systems arising from the poroelasticity equations, and thus, accelerates the coupled simulations for all cases subject to investigation. The joint utilization of the two-level SCMG with the ILU1 preconditioner emerges as the most optimal preconditioning/iterative solution strategy in a great majority of the problems evaluated in this work. The BiCGSTAB iterative solver converges more rapidly compared to PCG in a number of test cases, in which various SCMG-accelerated pre conditioning strategies are applied to both iterators.
机译:力平衡方程的Galerkin有限元离散化通常导致具有实际尺寸的大型土耳系统用于地质力学问题。在迭代耦合流动和地质力学建模中,大型线性系统通常在耦合迭代过程中的每个时间步通常被多次求解。由多孔弹性方程产生的线性系统的迭代解构成了耦合建模中最耗时且耗费大量内存的组件。 Block Jacobi,LSOR和Incomplete LU因式分解是流行的预处理技术,用于加速多孔弹性线性系统的迭代求解。然而,仍然存在对更有效,高效和鲁棒的迭代求解技术的需求,尤其是对于需要在大量时间步内求解多孔弹性系统的大型耦合建模问题。我们开发了一种超粗化多重网格方法(SCMG),该方法可以与常用的预处理技术相乘组合。 SCMG已针对各种耦合的流动和地质力学问题进行了测试,这些问题涉及就地碳氢化合物的单相耗竭和多相驱替,CO_2注入以及极端的材料特性对比。我们的分析表明,SCMG不断改善了由孔隙弹性方程产生的线性系统的收敛性,从而加快了所有受调查案例的耦合模拟。在这项工作中评估的大​​多数问题中,两级SCMG与ILU1预调节器的联合利用成为了最佳的预调节/迭代解决方案。与PCG相比,BiCGSTAB迭代求解器在许多测试用例中的收敛速度更快,在这些测试用例中,将两种SCMG加速的预处理策略应用于两个迭代器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号