首页> 外文期刊>Composites >3D microstructural characterization and mechanical properties determination of short basalt fiber-reinforced polyamide 6,6 composites
【24h】

3D microstructural characterization and mechanical properties determination of short basalt fiber-reinforced polyamide 6,6 composites

机译:玄武岩短纤维增强聚酰胺6,6复合材料的3D微观结构表征和力学性能确定

获取原文
获取原文并翻译 | 示例
           

摘要

This study aimed to quantify the 3D microstructure of short basalt fiber (BF)-reinforced polyamide 6,6 (PA6,6) composites, in an attempt to more accurately predict their mechanical properties. Thermoplastics are often reinforced with short fibers to improve their strength. BF is a natural fibrous material and a potential option for thermoplastic reinforcement. However, injection-molded composite materials, including thermoplastics, have microstructural properties that evolve during the molding process. Thus, a method for quantifying the microstructure of short fiber-reinforced plastic (SFRP) composites is of particular interest with regard to predicting and optimizing the performance thereof. In this study, nondestructive analysis of the internal microstructure of injection-molded, SBF/PA6,6 composites was conducted using micro-computed tomography (mu-CT) imaging. All of the composite components, including the SBFs, PA6,6, and voids, were reconstructed into 3D digital images and subsequently defined as basic structural models. To investigate the effects of fiber length and orientation on the mechanical properties of the composites, longitudinally and transversely fiber-oriented SBF/PA6,6 composite specimens were carefully compared. mu-CT-assisted analytical measurements were then conducted using the reconstruction models and simulation tools to determine the fiber length, orientation distribution, and anisotropic mechanical properties. The resulting microstructure-based predictions yielded valuable information clarifying the relationship between the 3D microstructure and mechanical properties of injection-molded SBF/PA6,6 composites. The results showed a 20% increase in the tensile strength of specimens having SBFs oriented in the longitudinal versus transverse direction. Thus, the anisotropic nature of the composites, attributable to the internally dispersed fibers, has an effect on the composite's mechanical properties. This article provides an important overview of predictive technologies based on the internal microstructure of SFRPs, and insight into the means to further advance this technology.
机译:这项研究旨在量化短玄武岩纤维(BF)增强的聚酰胺6,6(PA6,6)复合材料的3D微观结构,以试图更准确地预测其机械性能。热塑性塑料通常用短纤维增强,以提高强度。高炉是一种天然纤维材料,也是热塑性增强的潜在选择。但是,包括热塑性塑料在内的注塑复合材料具有在模塑过程中演变的微观结构特性。因此,关于预测短纤维增强塑料(SFRP)复合材料的微观结构的方法在其性能的预测和优化方面特别受关注。在这项研究中,使用微型计算机断层扫描(mu-CT)成像技术对注塑成型的SBF / PA6,6复合材料的内部微观结构进行了无损分析。将所有复合组件(包括SBF,PA6,6和空隙)重建为3D数字图像,然后将其定义为基本结构模型。为了研究纤维长度和取向对复合材料力学性能的影响,仔细比较了纵向和横向纤维取向的SBF / PA6,6复合材料样品。然后使用重建模型和模拟工具进行mu-CT辅助分析测量,以确定纤维长度,取向分布和各向异性力学性能。最终基于微观结构的预测产生了有价值的信息,阐明了3D微观结构与注塑SBF / PA6,6复合材料的力学性能之间的关系。结果表明,具有沿纵向与横向定向的SBF的试样的拉伸强度提高了20%。因此,归因于内部分散的纤维的复合材料的各向异性性质对复合材料的机械性能有影响。本文提供了基于SFRP内部微观结构的预测技术的重要概述,并深入探讨了进一步推进该技术的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号