...
首页> 外文期刊>IEEE Transactions on Components and Packaging Technologies >Influence of Bias-Enhanced Nucleation on Thermal Conductance Through Chemical Vapor Deposited Diamond Films
【24h】

Influence of Bias-Enhanced Nucleation on Thermal Conductance Through Chemical Vapor Deposited Diamond Films

机译:偏压增强形核对化学气相沉积金刚石薄膜导热的影响

获取原文
获取原文并翻译 | 示例
           

摘要

This work describes an experimental study of the cross-plane thermal conductance of plasma-enhanced chemical vapor deposited (PECVD) diamond films grown as a result of bias-enhanced nucleation (BEN). The diamond films are grown on silicon wafers using a two-step process in which a nucleation layer of amorphous or diamond like (DLC) carbon is first deposited on the silicon under the influence of a voltage bias. Then, conditions are adjusted to allow for polycrystalline diamond (PD) growth. The nucleation layer is essential for seeding diamond growth on smooth substrates and for optimizing PD properties such as grain size, orientation, transparency, adhesion, and roughness. A photoacoustic (PA) technique is employed to measure the thermal conductivities of and the thermal interface resistances between the layers in the diamond film structure. The influence of nucleation layers that are 70, 240, 400, and 650 nm thick on the thermal conductance of the diamond film structure is characterized. The thermal conductivity of the nucleation layer exhibits a thickness dependence for relatively thin layers. For each sample, the thermal conductivity of the PD is higher than 500 W$cdot$m $^{ - 1}$K$^{ - 1}$ (measurement sensitivity limit). A resistive network for the diamond film structure is developed. The resistance at the siliconucleation interface is less than 10$^{ - 9}$m$^{2}cdot$K $cdot$W$^{ - 1}$ (measurement sensitivity limit), which is of the order of theoretical predictions. The minimum diamond film structure resistance occurs when the nucleation layer is thinnest. When the nucleation layer is sufficiently- thick, it begins to exhibit bulk behavior, and the resistance at the nucleation/PD interface dominates the thermal resistance of the diamond film structure.
机译:这项工作描述了由于偏置增强形核(BEN)而生长的等离子体增强化学气相沉积(PECVD)金刚石薄膜的跨平面热导率的实验研究。金刚石膜使用两步工艺在硅晶片上生长,其中非晶硅或类金刚石(DLC)碳的成核层首先在电压偏置的影响下沉积在硅上。然后,调整条件以允许多晶金刚石(PD)生长。成核层对于在光滑的基材上播种钻石生长以及优化PD性能(例如晶粒尺寸,取向,透明度,附着力和粗糙度)至关重要。采用光声(PA)技术来测量金刚石薄膜结构中各层的热导率和各层之间的热界面电阻。表征了70、240、400和650 nm厚的成核层对金刚石膜结构的热导率的影响。对于相对薄的层,成核层的导热率表现出厚度依赖性。对于每个样本,PD的热导率都高于500 W $ cdot $ m $ ^ {-1} $ K $ ^ {-1} $(测量灵敏度极限)。开发了用于金刚石膜结构的电阻网络。硅/成核界面的电阻小于10 $ ^ {-9} $ m $ ^ {2} cdot $ K $ cdot $ W $ ^ {-1} $(测量灵敏度极限),大约理论预测。当成核层最薄时,最小的金刚石膜结构电阻发生。当成核层足够厚时,它开始表现出体相行为,并且在成核/ PD界面处的电阻支配着金刚石膜结构的热阻。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号