...
首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Geometric considerations of a good dictionary for Koopman analysis of dynamical systems: Cardinality, 'primary eigenfunction,' and efficient representation
【24h】

Geometric considerations of a good dictionary for Koopman analysis of dynamical systems: Cardinality, 'primary eigenfunction,' and efficient representation

机译:一种良好词典的几何考虑,用于动力系统的Koopman分析:基数,“主要特征,”和高效代表

获取原文
获取原文并翻译 | 示例
           

摘要

Representation of a dynamical system in terms of simplifying modes is a central premise of reduced order modelling and a primary concern of the increasingly popular DMD (dynamic mode decomposition) empirical interpretation of Koopman operator analysis of complex systems. In the spirit of optimal approximation and reduced order modelling the goal of DMD methods and variants are to describe the dynamical evolution as a linear evolution in an appropriately transformed lower rank space, as best as possible. That Koopman eigenfunctions follow a linear PDE that is solvable by the method of characteristics yields several interesting relationships between geometric and algebraic properties. Corresponding to freedom to arbitrarily define functions on a data surface, for each eigenvalue, there are infinitely many eigenfunctions emanating along characteristics. We focus on contrasting cardinality and equivalence. In particular, we introduce an equivalence class, & ldquo;primary eigenfunctions,& rsquo; consisting of those eigenfunctions with identical sets of level sets, that helps contrast algebraic multiplicity from other geometric aspects. Popularly, Koopman methods and notably dynamic mode decomposition (DMD) and variants, allow data-driven study of how measurable functions evolve along orbits. As far as we know, there has not been an in depth study regarding the underlying geometry as related to an efficient representation. We present a construction that leads to functions on the data surface whose corresponding eigenfunctions are efficient in a least squares sense. We call this construction optimal Koopman eigenfunction DMD, (oKEEDMD), and we highlight with examples.(c) 2021 Elsevier B.V. All rights reserved.
机译:在简化模式方面表示动态系统是减少订单建模的中央前提,以及越来越受欢迎的DMD(动态模式分解)复杂系统的Koopman操作员分析的经验解释的主要关注点。在最佳逼近的精神和降低的顺序建模DMD方法和变体的目标是描述作为适当变换的较低秩空间中的线性演变的动态演变,尽可能地。该Koopman特征障碍遵循通过特性方法可解的线性PDE产生几何和代数特性之间的几个有趣关系。对应于自由度来任意定义数据表面上的功能,对于每个特征值,沿着特征产生无限的许多特征障碍。我们专注于对比的基数和等价。特别是,我们介绍了一个等价类,“主要特征障碍,’由那些具有相同级别集合的特征功能组成,其可帮助来自其他几何方面的对比代数多重性。普遍地说,Koopman方法和尤利地动态模式分解(DMD)和变体,允许数据驱动的研究如何沿轨道演变的函数如何发展。据我们所知,关于与高效代表相关的底层几何学没有深入研究。我们介绍了一种在数据表面上发挥作用的结构,其对应的特征函数在最小二乘意义上有效。我们称之为这个施工最佳Koopman特征函数DMD,(OkeedMD),我们用例子突出显示。(c)2021 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号