...
首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Mathematical modelling of streamwise velocity profile in open channels using Tsallis entropy
【24h】

Mathematical modelling of streamwise velocity profile in open channels using Tsallis entropy

机译:TSALLIS熵的开放通道中流速度曲线的数学建模

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This study derived the vertical distribution of streamwise velocity in wide-open channels by maximizing Tsallis entropy, in accordance with the maximum entropy principle, subject to the total probability rule, and the constraints based on the conservation of mass, momentum, and energy. Entropy maximizing leads to a highly nonlinear differential equation for velocity, which was transformed into a relatively weaker nonlinear equation and then solved analytically using a non-perturbation approach that yielded a series solution. The convergence of the series solution was proved using both theoretical and numerical procedures. For the velocity profile assessment, we calculated the Lagrange multipliers and the entropy index by solving a system of nonlinear equations using the Gauss-Newton method after approximating the constraint integrals using Gauss-Legendre quadrature rule. The derived velocity profile was validated for some selected sets of laboratory and field data and was compared with the existing velocity profiles based on Renyi, Tsallis, and Shannon (with additional constraints) entropies. We found that the incorporation of additional constraints and the effect of the entropy index improved the velocity profile compared to the existing Tsallis and Renyi entropy-based velocity equations. Further, it was observed that the proposed model and the Shannon entropy-based model with additional constraints behaved the same for most of the data sets considered, as the corresponding values of the entropy index were close to 1, which is in agreement with the theoretical consideration. The methodology reported in this study can also be employed for addressing other open channel flow problems, such as sediment concentration and shear stress distribution. (C) 2020 Elsevier B.V. All rights reserved.
机译:这项研究通过最大化Tsallis熵,根据总概率规则的最大熵原理和基于群众,动量和能量的限制,通过最大熵原理来源于宽开放通道中的垂直分布。熵最大化导致高度非线性微分方程的速度,其转化为相对较弱的非线性方程,然后使用产生串联溶液的非扰动方法进行分析解决。使用理论和数值程序证明了串联解决方案的收敛性。对于速度简档评估,我们计算了使用Gauss-Newton方法在使用Gauss-Legendre正交规则的约束积分之后求解非线性方程系统的拉格朗日乘法器和熵索引。验证了导出的速度简档对于一些选定的实验室和现场数据进行了验证,并与基于Renyi,Tsallis和Shannon(附加限制)熵的现有速度配置文件进行了比较。我们发现,与现有的TSAllis和基于Renyi熵的速度方程相比,纳入额外约束和熵指数的效果改善了速度分布。此外,观察到,对于大多数数据集,所提出的模型和基于Shannon熵的模型对所考虑的大多数数据集表现相同,因为熵指数的相应值接近1,这与理论一致考虑。本研究报告的方法也可以用于解决其他开放通道流量问题,例如沉积物浓度和剪切应力分布。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号