...
首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Simulation of human ischemic stroke in realistic 3D geometry
【24h】

Simulation of human ischemic stroke in realistic 3D geometry

机译:在逼真的3D几何中模拟人体缺血性中风

获取原文
获取原文并翻译 | 示例
           

摘要

In silico research in medicine is thought to reduce the need for expensive clinical trials under the condition of reliable mathematical models and accurate and efficient numerical methods. In the present work, we tackle the numerical simulation of reaction-diffusion equations modeling human ischemic stroke. This problem induces peculiar difficulties like potentially large stiffness which stems from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of steep spatial gradients in the reaction fronts, spatially very localized. Furthermore, simulations on realistic 3D geometries are mandatory in order to describe correctly this type of phenomenon. The main goal of this article is to obtain, for the first time, 3D simulations on realistic geometries and to show that the simulation results are consistent with those obtain in experimental studies or observed on MRI images in stroke patients. For this purpose, we introduce a new resolution strategy based mainly on time operator splitting that takes into account complex geometry coupled with a well-conceived parall-elization strategy for shared memory architectures. We consider then a high order implicit time integration for the reaction and an explicit one for the diffusion term in order to build a time operator splitting scheme that exploits efficiently the special features of each problem. Thus, we aim at solving complete and realistic models including all time and space scales with conventional computing resources, that is on a reasonably powerful workstation. Consequently and as expected, 2D and also fully 3D numerical simulations of ischemic strokes for a realistic brain geometry, are conducted for the first time and shown to reproduce the dynamics observed on MRI images in stroke patients. Beyond this major step, in order to improve accuracy and computational efficiency of the simulations, we indicate how the present numerical strategy can be coupled with spatial adaptive multiresolution schemes. Preliminary results in the framework of simple geometries allow to assess the proposed strategy for further developments.
机译:在可靠的数学模型和准确而有效的数值方法的条件下,计算机医学研究被认为减少了对昂贵的临床试验的需求。在目前的工作中,我们处理模拟人体缺血性中风的反应扩散方程的数值模拟。这个问题引起了特殊的困难,例如潜在的较大刚度,这是由于非线性化学源项中的时标范围广,以及由于反应前沿在空间上非常局限性而存在陡峭的空间梯度。此外,必须对现实的3D几何图形进行仿真,才能正确描述这种现象。本文的主要目的是首次获得对真实几何图形的3D仿真,并表明该仿真结果与实验研究获得的结果或在卒中患者的MRI图像上观察到的结果一致。为此,我们引入了一种新的分辨率策略,该策略主要基于时间操作符拆分,该算法考虑了复杂的几何形状以及为共享内存体系结构精心设计的并行化策略。然后,我们考虑对反应进行高阶隐式时间积分,并为扩散项考虑一个显式时间积分,以建立可有效利用每个问题的特殊特征的时间算子拆分方案。因此,我们的目标是在一个功能强大的工作站上,使用常规的计算资源来解决包括所有时间和空间尺度在内的完整而现实的模型。因此,正如预期的那样,首次进行了针对真实脑部几何结构的缺血性卒中的2D以及全3D数值模拟,并显示了这些数据可重现卒中患者在MRI图像上观察到的动态。除此主要步骤外,为了提高仿真的准确性和计算效率,我们指出了如何将当前的数值策略与空间自适应多分辨率方案结合起来。在简单几何结构的框架中获得的初步结果可以评估所提议的策略以进行进一步的开发。

著录项

  • 来源
  • 作者单位

    Institut Camille Jordan - UMR CNRS 5208, Universite de Lyon, Universite Lyon 1. INSA de Lyon 69621,Ecole Centrale de Lyon, 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France,INRIA, Project-team NUMED, Ecole Normale superieure de Lyon, 46 allee d'Italie, 69007 Lyon Cedex 07, France;

    Laboratoire EM2C - UPR CNRS 288, Ecole Centrale Paris, Grande Vote des Vignes, 92295 Chatenay-Malabry Cedex, France,Laboratoire J. A. Dieudonne - UMR CNRS 7351, Universite de Nice - Sophia Antipolis, Pare Valrose, 06108 Nice Cedex 02, France;

    Laboratoire J. A. Dieudonne - UMR CNRS 7351, Universite de Nice - Sophia Antipolis, Pare Valrose, 06108 Nice Cedex 02, France,INRIA Sophia Antipolis - Mediterranee research center, Project-team NACHOS, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex, France;

    Universite de Lyon, F-69000, Lyon Universite Lyon 1, CNRS, UMR5558, Laboratoire de Biometrie et Biologie Evolutive, F-69622 Villeurbanne, France,INRIA, Project-team NUMED, Ecole Normale superieure de Lyon, 46 allee d'Italie, 69007 Lyon Cedex 07, France;

    Laboratoire EM2C - UPR CNRS 288, Ecole Centrale Paris, Grande Vote des Vignes, 92295 Chatenay-Malabry Cedex, France;

    Institut Camille Jordan - UMR CNRS 5208, Universite de Lyon, Universite Lyon 1. INSA de Lyon 69621,Ecole Centrale de Lyon, 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    ischemic stroke; reaction-diffusion equations; operator splitting; parallel computing;

    机译:缺血性中风;反应扩散方程;操作员拆分;并行计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号