首页> 外文期刊>Combustion Science and Technology >Dynamics and Diagnostics of Flame-Acoustic Interactions
【24h】

Dynamics and Diagnostics of Flame-Acoustic Interactions

机译:火焰声相互作用的动力学和诊断

获取原文
获取原文并翻译 | 示例
           

摘要

Flame-acoustic interactions are witnessed in the context of combustion instability in gas turbine combustors and other propulsion devices, such as rockets, besides confined combustion systems in general, such as furnaces and heaters. The confinement causes acoustic standing wave modes that interact with the flame to cause fluctuations in all quantities to grow in amplitude. This review categorizes the different canonical flame-holding geometries that mostly involve flow recirculation zones for flame stabilization, which are inherently unstable and feed into the flame-acoustic interaction cycle. The receptivity of the nonreacting shear layer to prevalent acoustic forcing in terms of development of coherent structures and instability of different hydrodynamic modes in the recirculation are detailed. The case of reacting flow instabilities involves several mechanisms of flame-acoustic coupling, such as vortex combustion; vortex-wall interactions; vortex-vortex interactions; flame area fluctuations and equivalence ratio, vorticity, and entropy fluctuations; bifurcations of the combustor dynamics; and its Strouhal scaling. In some instances, flame blowout dynamics as well as flashback are coupled with the prevalent acoustic oscillations. Some of these aspects have been well diagnosed in the recent literature, notably using planar laser-induced fluorescence for flame marking and particle image velocimetry to characterize the flow in a time-resolved manner. Reduced order models based on empirically determined flame transfer functions and predictive tools for onset of combustion instability based on time series analysis, either from a nonlinear dynamical viewpoint or a data-driven approach, are in current vogue.
机译:在燃气轮机燃烧室和其他推进装置(例如火箭)中,除了一般的受限燃烧系统(例如,炉子和加热器)外,燃烧不稳定性还证明了火焰声相互作用。该限制导致与火焰相互作用的声驻波模式,从而导致所有量的波动幅度都增大。这篇综述对不同的典型火焰保持几何形状进行了分类,这些几何形状主要涉及用于火焰稳定的流动再循环区域,这些区域固有地不稳定并且会进入火焰-声相互作用循环。详细介绍了非反应性剪切层对相干结构发展和再循环中不同流体动力模式的不稳定性的普遍声强迫的接受性。反应流动不稳定的情况涉及火焰-声耦合的几种机理,例如涡旋燃烧。涡-壁相互作用;涡旋相互作用火焰面积波动和当量比,涡度和熵波动;燃烧室动力学的分叉;及其Strouhal缩放。在某些情况下,喷火动力学以及回火与普遍的声波振荡有关。这些方面中的一些已经在最近的文献中得到了很好的诊断,特别是使用平面激光诱导的荧光进行火焰标记和粒子图像测速法以时间分辨的方式表征流动。基于非线性动力学观点或数据驱动方法的基于经验确定的火焰传递函数的降阶模型和基于时间序列分析的燃烧不稳定性发作的预测工具目前正在流行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号