首页> 外文期刊>Combustion Science and Technology >Piloted Liquid Spray Flames: A Numerical and Experimental Study
【24h】

Piloted Liquid Spray Flames: A Numerical and Experimental Study

机译:试验液体喷雾火焰:数值和实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

Liquid-fuel spray flames are the primary mode of energy conversion in many high-power-density practical combustion devices. As compared to gaseous fuels, the phase change in liquid-fuel spray flames complicates the environment for laser-based combustion diagnostics and formulating predictive computational models. In this work, we present in-situ, non-intrusive measurement strategies and predictive models for combustion and carbon monoxide (CO) formation in piloted liquid-methanol spray flames. Resolving CO is essential to understand the incomplete oxidation of liquid hydrocarbon fuels and subsequent soot formation. A modified, flat-flame McKenna burner fitted with a direct-injection high-efficiency nebulizer (DIHEN) is used to produce piloted liquid-methanol spray flames. Hydroxyl (OH) planar laser-induced fluorescence (PLIF) is used for characterizing the reaction zones and temperature profiles of liquid-spray flames and two-dimensional (2D) images of CO are obtained via two-photon laser-induced fluorescence (TPLIF) using ultrashort, femtosecond-duration (fs) laser pulses. A three-dimensional (3D) computational model comprised of compressible continuous gas phase using unsteady Reynolds-averaged Navier-Stokes (URANS) in conjunction with two-way coupled Eulerian-Lagrangian spray modeling approach and partially-stirred reactor combustion model has been adapted to the modified McKenna burner. The computational model predicts the general trends of OH, temperature and CO profiles well at certain heights above the burner surface. Limitations of experimental measurements and strategies for improved model predictions pertaining to distributions of droplet sizes, pilot flame temperature, and the coflow temperature are discussed.
机译:液体燃料喷雾火焰是许多高功率密度实用燃烧装置中的能量转换的主要模式。与气态燃料相比,液体燃料喷雾火焰中的相变使基于激光的燃烧诊断和制定预测计算模型的环境变得复杂化。在这项工作中,我们以先进的液 - 甲醇喷雾火焰在燃烧和一氧化碳(CO)形成的原位,非侵入式测量策略和预测模型。解决CO对于了解液态烃燃料的不完全氧化和随后的烟灰形成至关重要。使用直喷式高效雾化器(DIHEN)的改进的平坦火焰McKenna燃烧器用于生产导液 - 甲醇喷雾火焰。羟基(OH)平面激光诱导的荧光(PLIF)用于表征反应区和液体喷雾火焰的温度谱,通过双光子激光诱导的荧光(TPLIF)获得CO的二维(2D)图像使用超短的飞秒持续时间(FS)激光脉冲。一种三维(3D)计算模型,包括使用不稳定的雷诺平均天线的可压缩连续气相(URANS)与双向耦合的Eulerian-Lagrangian喷雾建模方法和部分搅拌的反应器燃烧模型一起进行了调整改进的McKenna燃烧器。计算模型在燃烧器表面上方的某些高度处预测OH,温度和CO型材的一般趋势。讨论了实验测量和策略的局限性,改进了与液滴尺寸,导频火焰温度和CoFlow温度的分布有关的模型预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号