首页> 外文期刊>Combustion Science and Technology >Soot Modeling of Ethylene Counterflow Diffusion Flames
【24h】

Soot Modeling of Ethylene Counterflow Diffusion Flames

机译:乙烯逆流扩散火焰的烟灰模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Combustion-generated nanoparticles cause detrimental effects to not only health and environment but also combustion efficiency. A detailed kinetic mechanism employing a discrete sectional model is validated using experimental data obtained in laminar counterflow diffusion flames of ethylene/oxygenitrogen. Two configurations, named Soot formation (SF) and soot formation/oxidation (SFO) flames, are modeled using one-dimensional simulations. Radiative heat losses reduce the maximum flame temperature in the range of 20-60K and therefore reduce soot volume fraction by 10%. The model predictions accounting for the radiation effects are quite satisfactory. The model can reproduce the qualitative trends of soot volume fraction peaks that are slightly shifted toward the oxidizer zone with the increased oxygen content. In SF flames, the model predicts the maximum soot volume fraction quite well with the largest discrepancy of two folds. The particle stagnation locations can be reproduced by the model, although they are slightly shifted toward the oxidizer nozzle by 0.4mm. In SFO flames, the most considerable discrepancy is observed at the least sooting flame (xF,o=0.23) in which the model over-predicts the maximum soot volume fraction by a factor of two. The effect of soot oxidation is important. The model shows that neglecting oxidation of soot significantly increases soot volume fraction in SFO flames by two folds while SF flames are only marginally affected. Also, ignoring soot oxidation leads to the presence of soot particles in the oxidizer zone where they are not observed experimentally. OH is the most effective oxidizer because the sooting zone is located inside the flame region. The effect of thermophoresis is also investigated. It strongly influences SFO flames due to the high temperature gradient. The model accounting particle diffusivities from Stokes-Cunningham correlation can better characterize the distinct particle stagnation plane of SF flames due to their low diffusion coefficients.
机译:燃烧产生的纳米颗粒不仅对健康和环境造成不利影响,而且还对燃烧效率造成不利影响。使用在乙烯/氧气/氮气的层流逆流扩散火焰中获得的实验数据验证了采用离散截面模型的详细动力学机理。使用一维模拟对名为烟灰形成(SF)和烟灰形成/氧化(SFO)火焰的两种配置进行建模。辐射热损失将最大火焰温度降低了20-60K,从而将烟灰体积分数降低了10%。考虑到辐射效应的模型预测非常令人满意。该模型可以重现烟灰体积分数峰值的定性趋势,随着氧气含量的增加,烟尘体积分数峰值向着氧化区略微偏移。在SF火焰中,该模型可以很好地预测最大烟灰体积分数,最大差异为两倍。尽管它们向着氧化剂喷嘴略微偏移了0.4mm,但可以通过模型重现颗粒的停滞位置。在SFO火焰中,观察到的最小烟灰火焰(xF,o = 0.23)的差异最大,在该模型中,模型将最大烟灰体积分数高估了两倍。烟尘氧化的作用很​​重要。该模型显示,忽略烟灰的氧化会显着增加SFO火焰中烟灰的体积分数两倍,而SF火焰只受到很小的影响。另外,忽略烟灰氧化会导致在氧化器区域中存在烟灰颗粒,而在实验中未观察到它们。 OH是最有效的氧化剂,因为烟ot区位于火焰区域内。还研究了热泳的作用。由于高温梯度,它强烈影响SFO火焰。基于Stokes-Cunningham相关性的模型核算颗粒扩散性由于其低扩散系数而可以更好地表征SF火焰的独特颗粒停滞平面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号