首页> 外文期刊>Combustion and Flame >Mechanisms of deflagration-to-detonation transition under initiation by high-voltage nanosecond discharges
【24h】

Mechanisms of deflagration-to-detonation transition under initiation by high-voltage nanosecond discharges

机译:高压纳秒放电引发的爆燃-爆轰过渡机制

获取原文
获取原文并翻译 | 示例
           

摘要

An experimental study of detonation initiation in a stoichiometric propane-oxygen mixture by a high-voltage nanosecond gas discharge was performed in a detonation tube with a single-cell discharge chamber. The discharge study performed in this geometry showed that three modes of discharge development were realized under the experimental conditions: a spark mode with high-temperature channel formation, a streamer mode with nonuni-form gas excitation, and a transient mode. Under spark and transient initiation, simultaneous ignition inside the discharge channel occurred, forming a shock wave and leading to a conventional deflagration-to-detonation transition (DDT) via an adiabatic explosion. The DDT length and time at 1 bar of initial pressure in the square smooth tube with a 20-mm transverse size amounted to 50 mm and 50 us, respectively. The streamer mode of discharge development at an initial pressure of I bar resulted in nonuniform mixture excitation and a successful DDT via a gradient mechanism, which was confirmed by high-speed time resolved ICCD imaging. The gradient mechanism implied a longer DDT time of 150 us, a DDT run-up distance of 50 mm, and an initiation energy of 1 J, which is two orders of magnitude less than the direct initiation energy for a planar detonation under these conditions.
机译:在具有单室放电室的爆震管中,通过高压纳秒气体放电在化学计量的丙烷-氧气混合物中引发爆轰的实验研究。在这种几何形状下进行的放电研究表明,在实验条件下实现了三种放电发展模式:具有高温通道形成的火花模式,具有非均匀气体激发的流光模式和瞬态模式。在火花和瞬变引发下,放电通道内同时发生点火,形成冲击波,并通过绝热爆炸导致常规的爆燃-引爆过渡(DDT)。在具有20 mm横向尺寸的方形光滑管中,初始压力为1 bar时DDT的长度和时间分别为50 mm和50 us。初始压力为1 bar时,放电流光模式导致混合气激发不均匀,并且通过梯度机制成功进行了DDT,这可以通过高速时间分辨ICCD成像得到证实。梯度机制意味着更长的DDT时间为150 us,DDT上升距离为50 mm,初始能量为1 J,比在这些条件下平面爆炸的直接初始能量小两个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号