首页> 外文期刊>Combustion and Flame >Experimental and computational study of methane counterflow diffusion flames perturbed by trace amounts of either jet fuel or a 6-component surrogate under non-sooting conditions
【24h】

Experimental and computational study of methane counterflow diffusion flames perturbed by trace amounts of either jet fuel or a 6-component surrogate under non-sooting conditions

机译:在非-行条件下被痕量喷气燃料或6组分替代物干扰的甲烷逆流扩散火焰的实验和计算研究

获取原文
获取原文并翻译 | 示例
           

摘要

The chemical structure of a methane counterflow diffusion flame and of the same flame doped with 1000 ppm (molar) of either jet fuel or a 6-component jet fuel surrogate was analyzed experimentally, by gas sampling via quartz microprobes and subsequent GC/MS analysis, and computationally using a semi-detailed kinetic mechanism for the surrogate blend. Conditions were chosen to ensure that all three flames were non-sooting, with identical temperature profiles and stoichiometric mixture fraction, through a judicious selection of feed stream composition and strain rate. The experimental dataset provides a glimpse of the pyrolysis and oxidation behavior of jet fuel in a diffusion flame. The jet fuel initial oxidation is consistent with anticipated chemical kinetic behavior, based on thermal decomposition of large alkanes to smaller and smaller fragments and the survival of ring-stabilized aromatics at higher temperatures. The 6-component surrogate captures the same trend correctly, but the agreement is not quantitative with respect to some of the aromatics such as benzene and toluene. Various alkanes, alkenes and aromatics among the jet fuel components are either only qualitatively characterized or could not be identified, because of the presence of many isomers and overlapping spectra in the chromatogram, leaving 80% of the carbon from the jet fuel unaccounted for in the early pyrolysis history of the parent fuel. Computationally, the one-dimensional code adopted a semi-detailed kinetic mechanism for the surrogate blend that is based on an existing hierarchically constructed kinetic model for alkanes and simple aromatics, extended to account for the presence of tetralin and methylcyclohexane as reference fuels. The computational results are in reasonably good agreement with the experimental ones for the surrogate behavior, with the greatest discrepancy in the concentrations of aromatics and ethylene.
机译:通过石英微探针的气体采样和随后的GC / MS分析,实验分析了甲烷逆流扩散火焰和掺杂有1000 ppm(摩尔)喷气燃料或6组分喷气燃料替代物的同一火焰的化学结构,并使用半详细动力学机制计算替代混合物。通过明智地选择进料流组成和应变速率,选择条件以确保所有三个火焰均无烟-,具有相同的温度曲线和化学计量的混合物分数。实验数据集提供了喷气燃料在扩散火焰中的热解和氧化行为的概览。喷气燃料的初始氧化与预期的化学动力学行为一致,这是基于大型烷烃热分解为越来越小的片段以及环稳定的芳烃在较高温度下的存留。 6组分替代物可以正确捕获相同的趋势,但是对于某些芳族化合物(如苯和甲苯)而言,该协议不是定量的。喷气燃料成分中的各种烷烃,烯烃和芳烃只是定性表征,或者由于色谱中存在许多异构体和重叠的光谱而无法鉴定,从而使喷气燃料中的碳有80%未被计算出来。母体燃料的早期热解历史。在计算上,一维代码对替代混合物采用了半详细的动力学机制,该机制基于烷烃和简单芳烃的现有分层构造动力学模型,并扩展为考虑到四氢萘和甲基环己烷作为参考燃料的存在。计算结果与替代行为的实验结果吻合良好,芳烃和乙烯的浓度差异最大。

著录项

  • 来源
    《Combustion and Flame》 |2009年第8期|1594-1603|共10页
  • 作者单位

    Department of Mechanical Engineering, Yale Center for Combustion Studies, Yale University, New Haven, CT 06520-8286, USA;

    Department of Mechanical Engineering, Yale Center for Combustion Studies, Yale University, New Haven, CT 06520-8286, USA;

    Department of Mechanical Engineering, Yale Center for Combustion Studies, Yale University, New Haven, CT 06520-8286, USA Shell Exploration and Production Co., Two Shell Plaza, 777 Walker St, Houston, TX 77002, USA.;

    Department of Mechanical Engineering, Yale Center for Combustion Studies, Yale University, New Haven, CT 06520-8286, USA;

    Department of Mechanical Engineering, Yale Center for Combustion Studies, Yale University, New Haven, CT 06520-8286, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    diffusion flame; counterflow; surrogate; jet fuel;

    机译:扩散火焰逆流代孕喷气燃料;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号