首页> 外文期刊>Combustion and Flame >The predictive capability of an automatically generated combustion chemistry mechanism: Chemical structures of premixed iso-butanol flames
【24h】

The predictive capability of an automatically generated combustion chemistry mechanism: Chemical structures of premixed iso-butanol flames

机译:自动生成的燃烧化学机理的预测能力:预混合异丁醇火焰的化学结构

获取原文
获取原文并翻译 | 示例
           

摘要

The chemical compositions of four low-pressure premixed flames of iso-butanol are investigated with an emphasis on assessing the predictive capabilities of an automatically generated combustion chemistry model. This kinetic model had been extensively tested against earlier experimental data and also shows impressive capabilities for predicting the new flame data presented here. The new set of data consists of isomer-resolved mole fraction profiles for more than 40 species in each of the four flames and provides a comprehensive benchmark for testing of any combustion chemistry model for iso-butanol. Isomer-specificity is achieved by analyzing flames, which are burner-stabilized at equivalence ratios of φ = 1.0-1.5 and at pressures between 15 and 30 Torr, with molecular-beam mass spectrometry and single-photon ionization by tunable vacuum-ultraviolet synchrotron radiation. Predictions of the C_2H_4O, C_3H_6O, and C_4H_8O enol-aldehyde-ketone isomers are improved compared to the earlier work by Hansen et al. [N. Hansen, M. R. Harper, W. H. Green, Phys. Chem. Chem. Phys. 13 (2011) 20262-20274] on similar n-butanol flames. A reaction path analysis identifies prominent fuel-consumption and oxidation sequences. Almost all of the species mole fraction data reported here are predicted within the measurement uncertainties of a factor of two to three. Some significant differences with previous published models are highlighted.
机译:研究了异丁醇的四个低压预混火焰的化学成分,重点是评估自动生成的燃烧化学模型的预测能力。该动力学模型已经针对较早的实验数据进行了广泛测试,并且还显示出令人印象深刻的预测此处提出的新火焰数据的能力。新的数据集包括四个火焰中每种火焰中超过40种的异构体分解的摩尔分数分布图,并为测试异丁醇的任何燃烧化学模型提供了全面的基准。异构体特异性是通过分析火焰来实现的,该火焰在分子束质谱法和单光子电离下通过可调的真空-紫外线同步辐射,在φ= 1.0-1.5的当量比和15至30 Torr的压力下,通过燃烧器稳定化。 。与Hansen等人的早期工作相比,C_2H_4O,C_3H_6O和C_4H_8O烯醇-醛-酮异构体的预测得到了改进。 [N. Hansen,M. R. Harper,W.H. Green,物理化学化学物理13(2011)20262-20274]。反应路径分析确定了重要的燃料消耗和氧化顺序。此处报告的几乎所有物种摩尔分数数据都是在测量不确定性(2到3倍)内预测的。与以前发布的模型有一些显着差异。

著录项

  • 来源
    《Combustion and Flame》 |2013年第11期|2343-2351|共9页
  • 作者单位

    Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551, United States;

    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States;

    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States,ExxonMobil Research & Engineering Company, Rte. 22 East, Annandale, NJ 08801, United States;

    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    iso-Butanol; Chemical mechanism; Mass spectrometry; Premixed flame;

    机译:异丁醇;化学机理;质谱;预混火焰;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号