首页> 外文期刊>Combustion and Flame >Experimental investigation and detailed modeling of soot aggregate formation and size distribution in laminar coflow diffusion flames of Jet A-1, a synthetic kerosene, and n-decane
【24h】

Experimental investigation and detailed modeling of soot aggregate formation and size distribution in laminar coflow diffusion flames of Jet A-1, a synthetic kerosene, and n-decane

机译:喷射A-1,合成煤油和正癸烷的层状同流扩散火焰中烟灰聚集物形成和尺寸分布的实验研究和详细建模

获取原文
获取原文并翻译 | 示例
           

摘要

A fully-coupled soot formation model is developed to predict the concentration, size, and aggregate structure of soot particles in the atmospheric pressure laminar coflow diffusion flames of a three-component surrogate for Jet A-1, a three-component surrogate for a Fischer-Tropsch Synthetic Paraffinic Kerosene (SPK), and n-decane. To model the chemical structure of the flames and soot precursor formation, a detailed chemical kinetic mechanism for fuel oxidation, with 2185 species and 8217 reactions, is reduced and combined with a Polycyclic Aromatic Hydrocarbon (PAH) formation and growth scheme. The mechanism is coupled to a highly detailed sectional particle dynamics model that predicts the volume fraction, structure, and size of soot particles by considering PAH-based nucleation, surface growth, PAH surface condensation, aggregation, surface oxidation, fragmentation, thermophoresis, and radiation. The simulation results are validated by comparing against experimental data measured for the flames of pre-vapor-ized fuels. The objectives of the present effort are to more accurately simulate the physical soot formation processes and to improve the predictions of our previously published jet fuel soot formation models, particularly for the size and aggregate structure of soot particles. To this end, the following improvements are considered: (1) addition of particle coalescence submodels to account for the loss of surface area, reduction of the number of primary particles, and increase of primary particle diameters upon collision, (2) consideration of a larger PAH molecule (benzopyrene instead of pyrene) for nucleation and surface growth to enhance the agreement between the soot model and the measured chemical composition of soot particles, and (3) implementation of a dimerization efficiency in the soot inception submodel to account for the collisions between PAH molecules that do not lead to dimerization. The results of two different particle coalescence submodels show that this process is too slow to account for the growth of primary particles, mainly because of the limited rate of particle collisions. Soot volume fraction predictions on the wings and at lower flame heights are considerably improved by using benzopyrene, due to the different distribution of the soot forming PAH molecule in the flame. The computed number of primary particles per aggregate and the diameters of primary particles agree very well with the experimentally measured values after implementing the dimerization efficiency for PAH collisions, because of the reduced rate of soot inception compared to growth by PAH condensation. Concentrations of major gaseous species and flame temperatures are also well predicted by the model. The underprediction of soot concentration on the flame centerline, observed in previous studies, still exists despite minor improvements.
机译:建立了完全耦合的烟灰形成模型,以预测Jet A-1的三组分替代物,Fischer的三组分替代物的大气压层流同流扩散火焰中烟灰颗粒的浓度,大小和聚集结构-Tropsch合成石蜡煤油(SPK)和正癸烷。为了模拟火焰和烟灰前体形成的化学结构,减少了具有2185种和8217个反应的详细的燃料氧化化学动力学机制,并将其与多环芳烃(PAH)的形成和生长方案相结合。该机制与高度详细的截面颗粒动力学模型耦合,该模型通过考虑基于PAH的成核,表面生长,PAH表面冷凝,聚集,表面氧化,破碎,热泳和辐射来预测烟灰颗粒的体积分数,结构和尺寸。通过与针对预汽化燃料火焰测量的实验数据进行比较来验证仿真结果。当前工作的目的是更精确地模拟物理烟灰形成过程,并改善我们先前发布的喷气燃料烟灰形成模型的预测,尤其是对于烟灰颗粒的大小和聚集结构。为此,考虑了以下改进:(1)添加粒子合并子模型以解决表面积损失,一次粒子数量减少以及碰撞时一次粒径增加的问题,(2)考虑较大的PAH分子(苯并re而不是pyr)用于成核和表面生长,以增强烟灰模型与测得的烟灰颗粒化学成分之间的一致性,以及(3)在烟灰起始子模型中实现二聚化效率以解决碰撞不会导致二聚化的PAH分子之间。两种不同的粒子合并子模型的结果表明,此过程太慢而无法解释一次粒子的增长,这主要是由于粒子碰撞的速度有限。通过使用苯并py,机翼和较低火焰高度上的烟灰体积分数预测得到了显着改善,这是由于形成烟灰的PAH分子在火焰中的分布不同。在实现PAH碰撞的二聚化效率后,计算出的每个聚集体中的初级颗粒数量和初级颗粒直径与实验测量值非常吻合,因为与通过PAH冷凝进行生长相比,烟灰起始速率降低了。该模型还可以很好地预测主要气态物质的浓度和火焰温度。尽管有较小的改进,但在以前的研究中仍观察到了对火焰中心线上烟尘浓度的低估。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号