首页> 外文期刊>Combustion and Flame >Experimental and detailed kinetic model for the oxidation of a Gas to Liquid (GtL) jet fuel
【24h】

Experimental and detailed kinetic model for the oxidation of a Gas to Liquid (GtL) jet fuel

机译:气体转化为液体(GtL)喷气燃料的实验和详细动力学模型

获取原文
获取原文并翻译 | 示例
           

摘要

The kinetics of oxidation, ignition, and combustion of Gas-to-Liquid (GtL) Fischer-Tropsch Synthetic kerosene as well as of a selected GtL-surrogate were studied. New experimental results were obtained using (ⅰ) a jet-stirred reactor - species profiles (10 bar, constant mean residence time of 1 s, temperature range 550-1150 K, equivalence ratios φ=0.5, 1, and 2), (ⅱ) a shock tube - ignition delay time (≈16 bar, temperature range 650-1400 K, φ = 0.5 and 1), and (ⅲ) a burner - laminar burning velocity (atmospheric pressure, preheating temperature = 473 K, 1.0 ≤ φ≤1.5). The concentrations of the reactants, stable intermediates, and final products were measured as a function of temperature in the jet-stirred reactor (JSR) using probe sampling followed by on-line Fourier Transformed Infra-Red spectrometry, and gas chromatography analyses (on-line and off-line). Ignition delay times behind reflected shock waves were determined by measuring time-dependent CH~* emission at 431 nm. Laminar flame speeds were obtained in a bunsen-type burner by applying the cone angle method. Comparison with the corresponding results for Jet A-1 showed comparable combustion properties. The GtL-fuel oxidation was modeled under these conditions using a detailed chemical kinetic reaction mechanism (8217 reactions vs. 2185 species) and a 3-component model fuel mixture composed of n-decane, iso-octane (2,2,4-trimethyl pentane), and n-pro-pylcyclohexane. The model showed good agreement with concentration profiles obtained in a JSR at 10 bar. In the high temperature regime, the model represents well the ignition delay times for the fuel air mixtures investigated; however, the calculated delays are longer than the measurements. It was observed that the ignition behavior of the surrogate fuel is mainly influenced by n-alkanes and not by the addition of iso-alkanes and cyclo-alkanes. The simulated laminar burning velocities were found in excellent agreement with the measurements. No deviation between burning velocity data for the GtL-surrogate and GtL was seen, within the uncertainty range. The presented data on ignition delay times and burning velocities agree with earlier results obtained for petrol-derived jet fuel. The suitability of both the current detailed reaction model and the selected GtL surrogate was demonstrated. Finally, our results support the use of the GtL fuel as an alternative jet fuel.
机译:研究了气-液(GtL)费-托合成煤油以及选定的GtL替代品的氧化,燃烧和燃烧的动力学。使用(ⅰ)射流搅拌反应器获得了新的实验结果-物质分布图(10 bar,恒定平均停留时间为1 s,温度范围为550-1150 K,当量比φ= 0.5、1,和2),(ⅱ )冲击管-点火延迟时间(≈16bar,温度范围650-1400 K,φ= 0.5和1),和(ⅲ)燃烧器-层流燃烧速度(大气压,预热温度= 473 K,1.0≤φ ≤1.5)。使用探针采样,然后进行在线傅里叶变换红外光谱法和气相色谱分析(在线检测),测量喷射搅拌反应器(JSR)中反应物,稳定的中间体和最终产物的浓度随温度的变化。在线和离线)。通过测量随时间变化的CH〜*在431 nm处的发射,可以确定反射冲击波背后的点火延迟时间。层流火焰速度是通过应用锥角法在本生式燃烧器中获得的。与Jet A-1的相应结果进行比较,显示出可比的燃烧性能。在这些条件下,使用详细的化学动力学反应机理(8217个反应对2185种反应)和由正癸烷,异辛烷(2,2,4-三甲基戊烷)和正丙基环己烷。该模型与在10 bar的JSR中获得的浓度曲线显示出良好的一致性。在高温状态下,该模型很好地代表了所研究的燃料空气混合物的点火延迟时间。但是,计算出的延迟比测量值长。观察到,替代燃料的着火行为主要受正构烷烃的影响,而不受异烷烃和环烷烃的添加的影响。发现模拟的层流燃烧速度与测量结果非常吻合。在不确定性范围内,没有发现GtL替代物和GtL的燃烧速度数据之间存在偏差。提出的有关点火延迟时间和燃烧速度的数据与从汽油衍生的喷气燃料获得的较早结果一致。展示了当前详细反应模型和所选GtL替代物的适用性。最后,我们的研究结果支持使用GtL燃料作为替代喷气燃料。

著录项

  • 来源
    《Combustion and Flame》 |2014年第3期|835-847|共13页
  • 作者单位

    Centre National de la Recherche Scientifique, 1C, Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2, France;

    Centre National de la Recherche Scientifique, 1C, Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2, France;

    Centre National de la Recherche Scientifique, 1C, Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2, France;

    Centre National de la Recherche Scientifique, 1C, Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2, France;

    Centre National de la Recherche Scientifique, 1C, Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2, France;

    Centre National de la Recherche Scientifique, 1C, Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2, France;

    Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany;

    Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany;

    Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany;

    Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany;

    Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany;

    Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany;

    Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Jet fuel; Ignition delay; Flame speed; Jet-stirred reactor; Shock tube; Kinetic modeling;

    机译:喷气燃料;点火延迟;火焰速度喷射搅拌反应器;避震管;动力学建模;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号