首页> 外文期刊>Combustion and Flame >Topology and burning rates of turbulent, lean, H-2/air flames
【24h】

Topology and burning rates of turbulent, lean, H-2/air flames

机译:湍流,稀薄,H-2 /空气火焰的拓扑和燃烧速率

获取原文
获取原文并翻译 | 示例
           

摘要

Improved understanding of turbulent flames characterized by negative consumption speed-based Markstein lengths is necessary to develop better models for turbulent lean combustion of high hydrogen content fuels. In this paper we investigate the topology and burning rates of turbulent, lean (phi = 0.31), H-2/air flames obtained from a recently published DNS database (Aspden et al., 2011). We calculate local flame front curvatures, strain rates, thicknesses, and burning velocities and compare these values to reference quantities obtained from stretched laminar flames computed numerically in three model geometrical configurations a counterflow twin flame, a tubular counterflow flame and an expanding cylindrical flame. We compare and contrast the DNS with these model laminar flame calculations, and show both where they closely correlate with each other, as well as where they do not. These results in the latter case are shown to result from non-flamelet behaviors, unsteady effects, and curvature-strain correlations. These insights are derived from comparisons conditioned on different topological features, such as portions of the flame front with a spherical/cylindrical shape, the leading edge of the flame, and portions of the flame front with low mean curvature. We also show that reference time scales vary appreciably over the flame, and characterizing the relative values of fluid mechanic and kinetic time scales by a single value leads to erroneous conclusions. For example, there is a two order of magnitude decrease in chemical time scales at the leading edge of the front relative to its unstretched value. For this reason, the leading edge of the front quite closely tracks quasi-steady calculations, even in the lowest Damkohler number case, Da(F)similar to 0.005. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:为了开发更好的高氢含量燃料湍流稀薄燃烧模型,有必要更好地理解以负消耗速度为基础的马克斯坦长度为特征的湍流火焰。在本文中,我们研究了从最近发布的DNS数据库获得的湍流,稀薄空气(phi = 0.31),H-2 /空气火焰的拓扑结构和燃烧速率(Aspden et al。,2011)。我们计算局部火焰的前曲率,应变率,厚度和燃烧速度,并将这些值与从拉伸层流火焰获得的参考量进行比较,这些层流火焰是在三种模型的几何配置(逆流双火焰,管状逆流火焰和膨胀圆柱形火焰)中进行数值计算的。我们将DNS与这些模型层流火焰计算进行了比较和对比,并显示了它们彼此之间密切相关的地方以及不相关的地方。在后一种情况下,这些结果表明是由于非火焰行为,不稳定影响以及曲率-应变相关性所致。这些见解来自于以不同拓扑特征为条件的比较,这些比较例如是球形/圆柱形的火焰前锋部分,火焰的前缘以及平均曲率低的火焰前锋部分。我们还表明,参考时间标度在火焰上有明显变化,并且用单个值来表征流体力学和动力学时间标度的相对值会导致错误的结论。例如,相对于其未拉伸值,前部前沿的化学时间标度减少了两个数量级。因此,即使在最低的Damkohler数Da(F)近似于0.005的情况下,前端的前沿也非常接近准稳态计算。 (C)2015年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

  • 来源
    《Combustion and Flame》 |2015年第12期|4553-4565|共13页
  • 作者单位

    Georgia Inst Technol, Sch Aerosp & Mech Engn, Atlanta, GA 30332 USA;

    Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA;

    Lawrence Berkeley Natl Lab, Environm & Energy Technol, Berkeley, CA 94720 USA;

    Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA;

    Georgia Inst Technol, Sch Aerosp & Mech Engn, Atlanta, GA 30332 USA;

    Georgia Inst Technol, Sch Aerosp & Mech Engn, Atlanta, GA 30332 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Premixed flames; Turbulent combustion; Leading points; Flame stretch;

    机译:预混火焰;湍流燃烧;前沿;火焰拉伸;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号