首页> 外文期刊>Combustion and Flame >Combustion stability and hetero-/homogeneous chemistry interactions for fuel-lean hydrogen/air mixtures in platinum-coated microchannels
【24h】

Combustion stability and hetero-/homogeneous chemistry interactions for fuel-lean hydrogen/air mixtures in platinum-coated microchannels

机译:铂涂层微通道中贫燃料的氢气/空气混合物的燃烧稳定性和异质/均质化学相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

The hetero-/homogeneous combustion and stability limits of fuel-lean hydrogen/air mixtures (equivalence ratio phi=0.40) were investigated numerically in a platinum-coated planar microchannel with a length of 10 nun and a height of 1 mm. A two-dimensional numerical model was used for both the gas and the solid, which included elementary heterogeneous and homogeneous reaction mechanisms, detailed transport, heat conduction in the solid, surface radiation heat transfer, and external losses via a heat transfer coefficient h. Pressures of 1 and 5 bar and solid thermal conductivities K-s = 1 and 16Wm(-1)K(-1) were analyzed, while stability maps were constructed in terms of the critical extinction heat transfer coefficient h(cr). versus inlet velocity U-IN (or mass throughput). For a given solid thermal conductivity, there existed a crossover mass throughput above (below) which the stability envelope was broader at 5 bar (1 bar). Simulations with a surface perfectly stirred reactor (SPSR) model qualitatively reproduced the crossover points, which originated from a shift in the pressure dependence of the catalytic reactivity of hydrogen. For the low solid thermal conductivity k(s) = 1 Wm(-1)K(-1), a non-monotonic dependence of the stability limits on the mass throughput was shown, with local minima created below the crossover point. The stability limits of hydrogen were solely determined by catalytic chemistry, as it sustained combustion at temperatures down to 320-380 K, at which gas-phase chemistry was frozen. Away from the critical extinction points, both catalytic and gas-phase reaction pathways were controlling. The diffusional imbalance of hydrogen, which led to catalytically-induced superadiabatic surface temperatures, and the suppression of the surface superadiabaticity by gaseous chemistry resulted in rich combustion phenomena, such as increasing peak wall temperatures with increasing heat transfer coefficients h. Critical extinction heat transfer coefficients for hydrogen were three to four orders of magnitude higher than those reported for methane and propane fuels in a similar channel geometry. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:在长度为10 nun,高度为1 mm的镀铂平面微通道中,对贫燃料氢/空气混合物(当量比phi = 0.40)的异质/均匀燃烧和稳定性极限进行了数值研究。二维数值模型用于气体和固体,包括基本的非均质和均相反应机理,详细的传输,固体中的热传导,表面辐射热传递以及通过热传递系数h的外部损失。分析了1 bar和5 bar的压力以及固体热导率K-s = 1和16Wm(-1)K(-1),同时根据临界消光传热系数h(cr)构造了稳定性图。与入口速度U-IN(或质量通过量)的关系。对于给定的固体导热率,在(以下)之上存在交叉质量通过量,其稳定性包络线在5 bar(1 bar)时较宽。使用表面完全搅拌反应器(SPSR)模型进行的模拟定性地再现了交叉点,该交叉点源自氢催化反应性的压力依赖性变化。对于低的固体导热系数k(s)= 1 Wm(-1)K(-1),显示了稳定性极限对质量通量的非单调依赖性,并在交叉点以下创建了局部最小值。氢的稳定性极限仅通过催化化学来确定,因为氢在低至320-380 K的温度下持续燃烧,在该温度下气相化学被冻结。远离临界灭绝点,催化和气相反应路径均受控制。氢的扩散不平衡,导致催化诱导的超绝热表面温度,以及通过气态化学对表面超绝热的抑制导致了丰富的燃烧现象,例如随着传热系数h的增加,峰值壁温升高。在相似的通道几何结构中,氢的临界绝热传热系数比甲烷和丙烷燃料的传热系数高三到四个数量级。 (C)2016年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号