首页> 外文期刊>Combustion and Flame >Emission and laser absorption spectroscopy of flat flames in aluminum suspensions
【24h】

Emission and laser absorption spectroscopy of flat flames in aluminum suspensions

机译:铝悬浮液中扁平火焰的发射和激光吸收光谱

获取原文
获取原文并翻译 | 示例
           

摘要

Imaging emission spectroscopy, spatially resolved laser-absorption spectroscopy, and particle image velocimetry (PIV) are applied to a flat flame stabilized in a suspension of micron-sized aluminum. The results from the combination of diagnostics are used to infer the combustion regime of the particles and to estimate the characteristic combustion time of the suspension. It is observed that the reaction zone of the flame in stoichiometric aluminum-air suspensions exhibits strong self-reversal of the atomic aluminum emission lines. These lines also exhibit high optical depths in both emission and absorption spectroscopy. The strong self-reversal and high optical depths indicate high concentrations of aluminum vapor within the reaction zone of the flame at multiple temperatures. These features provide evidence of the formation of vapor-phase micro-diffusion flames around the individual particles in the suspension. In aluminum-methane-air flames, the lack of self-reversal and lower optical depths of the aluminum atomic lines indicate the absence of vapor-phase micro-diffusion flames, and point to a more heterogeneous, and likely kinetically-controlled, particle combustion regime. The reaction zone thickness is estimated from the spatially resolved profiles of aluminum resonance lines in both absorption and emission through the flame. The emission measurements yield a reaction zone thickness on the order of 1.7 +/- 0.3 mm in aluminum-air flames, and the absorption measurements yield a thickness on the order of 2.3 +/- 0.5. It is demonstrated that the combination of the combustion zone thickness measurement, flame temperatures determined from molecular AlO emission spectra, and particle velocity measurements from the PIV diagnostic permits an estimation of the burning time in the suspension. The burning time in stoichiometric aluminum-air suspensions using the suite of diagnostics is estimated to be on the order of 0.7 ms. (C) 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:将成像发射光谱法,空间分辨激光吸收光谱法和粒子图像测速仪(PIV)应用于稳定在微米级铝悬浮液中的扁平火焰。诊断组合的结果可用于推断颗粒的燃烧状态并估算悬浮液的特征燃烧时间。观察到,在化学计量的铝-空气悬浮液中火焰的反应区表现出原子铝发射线的强烈自反转。这些线在发射光谱和吸收光谱中也表现出高的光学深度。强烈的自反转和高光学深度表明,在多种温度下,火焰反应区内的铝蒸气浓度很高。这些特征提供了在悬浮液中单个颗粒周围形成气相微扩散火焰的证据。在铝-甲烷-空气火焰中,缺少铝原子线的自反转和较低的光学深度,表明不存在气相微扩散火焰,并指出了更不均匀的,并且可能是动力学控制的粒子燃烧政权。根据铝共振线在火焰吸收和发射中的空间分辨轮廓估计反应区厚度。在铝空气火焰中,发射测量得出的反应区厚度约为1.7 +/- 0.3毫米,吸收测量得出的反应区厚度约为2.3 +/- 0.5毫米。结果表明,燃烧区厚度测量,根据分子AlO发射光谱确定的火焰温度和PIV诊断得出的颗粒速度测量相结合,可以估算悬浮液中的燃烧时间。使用诊断程序在化学计量铝空气悬架中的燃烧时间估计约为0.7毫秒。 (C)2017燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

  • 来源
    《Combustion and Flame》 |2017年第6期|230-238|共9页
  • 作者单位

    McGill Univ, Dept Mech Engn, 817 Sherbrooke West, Montreal, PQ H3A 0C3, Canada;

    McGill Univ, Dept Mech Engn, 817 Sherbrooke West, Montreal, PQ H3A 0C3, Canada;

    Univ Illinois, Mech Sci & Engn, 1206 West Green St, Urbana, IL 61801 USA;

    McGill Univ, Dept Mech Engn, 817 Sherbrooke West, Montreal, PQ H3A 0C3, Canada;

    McGill Univ, Dept Mech Engn, 817 Sherbrooke West, Montreal, PQ H3A 0C3, Canada;

    McGill Univ, Dept Mech Engn, 817 Sherbrooke West, Montreal, PQ H3A 0C3, Canada;

    McGill Univ, Dept Mech Engn, 817 Sherbrooke West, Montreal, PQ H3A 0C3, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Aluminum; Suspensions; Spectroscopy; Flames;

    机译:铝;悬浮液;光谱学;火焰;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号