首页> 外文期刊>Combustion and Flame >Kinetic barriers, rate constants and branching ratios for unimolecular reactions of methyl octanoate peroxy radicals: A computational study of a mid-sized biodiesel fuel surrogate
【24h】

Kinetic barriers, rate constants and branching ratios for unimolecular reactions of methyl octanoate peroxy radicals: A computational study of a mid-sized biodiesel fuel surrogate

机译:辛酸甲酯过氧自由基的单分子反应的动力学屏障,速率常数和支化比:中型生物柴油燃料替代物的计算研究

获取原文
获取原文并翻译 | 示例
           

摘要

Towards the goal of establishing kinetic database for low-temperature combustion (T < 1000K) of mid-sized biodiesel surrogates, the study uses quantum chemistry and statistical kinetic methods to investigate three primary unimolecular reaction pathways of methyl octanoate peroxy radicals, including dissociation, isomerization and concerted elimination. We calculate kinetic barriers and pressure-dependent rate constants at 500-1000 K. The comparison between our computed and previously estimated rate constants offers further insight into how transition state structures and molecular mechanics are correlated with reaction kinetics. In the branching ratio analysis, we investigate the proposed unimolecular reactions and factors affecting these kinetic characteristics. For the first time, the previously measured oxidation rates of methyl octanoate under the cool flame regime (560-1000 K) are computationally verified by kinetic modeling that reflects the contribution of the present submodel to an existing detailed mechanism of methyl octanoate. Consequently, the rate-of-production analysis reveals the significance of newly proposed reaction pathways. (C) 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:为了建立中型生物柴油替代品的低温燃烧(T <1000K)动力学数据库的目标,该研究使用量子化学和统计动力学方法研究了辛酸甲酯过氧自由基的三个主要单分子反应途径,包括解离,异构化和一致淘汰。我们计算了500-1000 K时的动力学势垒和压力相关的速率常数。我们所计算出的速率常数和先前估计的速率常数之间的比较提供了关于过渡态结构和分子力学与反应动力学之间如何关联的进一步见解。在分支比分析中,我们研究了提出的单分子反应和影响这些动力学特性的因素。第一次,通过动力学模型计算验证了先前在冷火焰条件下(560-1000 K)测量的辛酸甲酯的氧化速率,该动力学模型反映了本子模型对辛酸甲酯的现有详细机理的贡献。因此,生产率分析揭示了新提出的反应途径的重要性。 (C)2017燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号