首页> 外文期刊>Combustion and Flame >Soot-based Global Pathway Analysis: Soot formation and evolution at elevated pressures in co-flow diffusion flames
【24h】

Soot-based Global Pathway Analysis: Soot formation and evolution at elevated pressures in co-flow diffusion flames

机译:基于烟灰的全局途径分析:烟灰形成和升高压力在循环扩散火焰中的进化

获取原文
获取原文并翻译 | 示例
           

摘要

One of the major concerns in high pressure combustion is its high soot yield. An exact and comprehensive mechanism behind this phenomenon, from a chemical kinetics perspective, is still elusive. In this study, a series of pressurized (1-16 atm) co-flow ethylene diffusion sooting flames are simulated with detailed finite-rate chemistry and molecular transport. The experimental maximum soot volume fraction and its scaling law with pressure are well reproduced by the simulations. To extract kinetic information from the complex sooting reacting system, a Soot-based Global Pathway Analysis (SGPA) method is developed to identify the dominant Global Pathways (GPs) from fuel to soot by considering carbon element flux from gaseous species to soot. Using SGPA, the dominance and sensitivity of soot chemical pathways at elevated pressures are revealed. It is found that increasing pressure shifts the first ring Polycyclic Aromatic Hydrocarbon (PAH) formation from C3H3 recombination to reactions involving C2H2. At 1 atm, the production of C2H2 for surface growth is purely controlled by the H-abstraction of C2H4 and C2H3. In contrast, at elevated pressures, the production of C2H2 for surface growth is also influenced by many other reactions including some third body reactions. The SGPA method reveals that the mismatch of predicted PAH with the experimental data at 12 atm is majorly caused by the rate coefficient uncertainty of the reaction C2H2 + A1CH(2) = C9H8 + H. Based on the analysis by SGPA, the mechanism reduction based on Directed Relation Graph with Error Propagation (DRGEP) with A2 and C2H2 as the target species deleted significant species such as C9H8, C9H7, incurring inaccurate soot field prediction. It is also found that the combined dominance of GPs with heavier PAH species (A(4)-A(7)) is even greater than the most dominant GP at the flame wing regions, indicating that heavier PAH species play critical roles for soot nucleation and condensation, especially at the flame wing regions. (C) 2021 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:高压燃烧中的主要问题之一是其高烟灰产量。从化学动力学的角度来看,这种现象的精确和综合机制仍然难以捉摸。在该研究中,用详细的有限速率化学和分子运输模拟了一系列加压(1-16atm)共流乙烯扩散烟雾。实验最大烟灰体积分数及其缩放规律具有良好的模拟再现。为了从复合烟灰反应系统中提取动力学信息,开发了一种基于烟灰的全局途径分析(SGPA)方法,以通过考虑来自气态物种到烟灰的碳素元件通量来识别从燃料到烟灰的显性全球途径(GPS)。利用SGPA,揭示了升高压力下烟灰化学途径的优势和敏感性。发现增加压力将第一环多环芳烃(PAH)形成从C3H3重组形成到涉及C 2 H 2的反应。在1个ATM中,通过C2H4和C2H3的H次抽象纯粹控制用于表面生长的C2H2。相反,在升高的压力下,对于表面生长的C2H2的产生也受到许多其他反应的影响,包括一些第三种身体反应。 SGPA方法显示,在12个ATM中具有实验数据的预测PAH的不匹配是主要是由反应的速率系数不确定性C2H2 + A1CH(2)= C9H8 + H.基于SGPA的分析,基于机制减少在具有A2和C2H2的误差传播(DRGEP)的定向关系图上,因为目标物种删除了诸如C9H8,C9H7的有效物种,产生不准确的烟灰场预测。还发现,具有较重PAH物种的GPS的组合优势(A(4)-A(7))甚至比火焰翼区的最多显性GP大,表明较重的PAH物种为烟灰成核作出关键作用和冷凝,特别是在火焰翼区。 (c)2021燃烧研究所。由elsevier Inc.保留所有权利发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号