首页> 外文期刊>Combustion and Flame >On the effects of opposed flow conditions on non-buoyant flames spreading over polyethylene-coated wires - Part Ⅰ: Spread rate and soot production
【24h】

On the effects of opposed flow conditions on non-buoyant flames spreading over polyethylene-coated wires - Part Ⅰ: Spread rate and soot production

机译:对聚乙烯涂布丝扩散的非浮力传火的影响 - 第Ⅰ部分:扩散率和烟灰

获取原文
获取原文并翻译 | 示例
           

摘要

In microgravity, the extended time scales associated with the absence of buoyancy lead to peculiar flame features that are likely to affect the risk associated with flame spread in the case of a spacecraft fire. Investigating a non-buoyant flame spreading over the polyethylene coating of an electrical wire in an opposed laminar flow, recent studies especially evidenced and quantified the major role of soot in the radiative heat transfer, which affects local quenching at the flame tip as well as heat feedback from the flame to the coating. Consequently, the control of soot production in such a flame needs to be explored. In the present paper, the role of basic flow features, i.e. oxygen content, flow velocity, and ambient pressure, is documented. Conducted in parabolic flights, a set of 142 experiments spreads over 91 flow conditions, with oxygen content ranging from 18% to 21%, flow velocity kept between 100 mm s(-1) and 200 mm s(-1), and pressure ranging from 51 kPa to 142 kPa. The implementation of the Broadband Modulated Absorption/Emission (B-MAE) technique allows the fields of soot temperature and volume fraction to be measured within the spreading flames. The flame spread rate is thus shown to be an increasing function of oxygen content, but is independent of flow velocity and pressure. Concomitantly, both oxygen content and flow velocity affect soot production residence time, while pressure has a marginal impact on it. Maximum soot volume fraction is a function of all three parameters. Complementing these results with a scaling analysis, soot production rate is third-order in pressure, and very sensitive to oxygen content. An increase in flow velocity promotes two competitive processes with respect to maximum soot volume fraction, i.e. a reduction in residence time and an increase in flame temperature. A numerical model supports the experimental finding that the latter phenomenon prevails, hence that maximum soot volume fraction increases with flow velocity. These conclusions will serve as basis for upcoming quenching and radiative heat feedback analysis. (C) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:在微匍匐度中,与不存在浮力的延长时间尺度导致特殊的火焰特征,其可能影响与航天器火灾的情况下与火焰传播的风险。研究了在相对的层流中的电线的聚乙烯涂层上铺展的非浮力火焰,最近的研究特别证明并量化了烟灰在辐射传热中的主要作用,这影响了火焰尖端的局部淬火以及热量从火焰到涂层的反馈。因此,需要探索在这种火焰中的烟灰产生的控制。在本文中,记录了基本流动特征的作用,即氧含量,流速和环境压力。在抛物线飞行中进行,一组142实验蔓延超过91个流动条件,氧含量范围为18%至21%,流速保持在100mm S(-1)和200mm S(-1)之间,压力测距从51 kpa到142 kpa。宽带调制吸收/发射(B-MAE)技术的实现允许在扩散火焰内测量烟灰温度和体积分数的场。因此,火焰扩散速率被证明是氧含量的越来越多的函数,而是与流速和压力无关。伴随,氧气含量和流速都会影响烟灰生产停留时间,而压力对其产生了边缘影响。最大烟灰体积分数是所有三个参数的函数。通过缩放分析补充这些结果,烟灰生产率在压力下是第三阶,对氧含量非常敏感。流速的增加促进了相对于最大烟灰体积分数的两个竞争过程,即停留时间的降低和火焰温度的增加。数值模型支持实验结果,即后一种现象所普遍的,因此,最大烟灰体积分数随着流速而增加。这些结论将作为即将淬火和辐射热反馈分析的基础。 (c)2020燃烧研究所。由elsevier Inc.出版的所有权利保留。

著录项

  • 来源
    《Combustion and Flame》 |2020年第11期|530-543|共14页
  • 作者单位

    Sorbonne Univ Inst Jean Le Rond Alembert UMR CNRS 7190 F-75005 Paris France;

    Sorbonne Univ Inst Jean Le Rond Alembert UMR CNRS 7190 F-75005 Paris France;

    Aix Marseille Univ UMR CNRS 7343 IUSTI 5 Rue E Fermi F-13453 Marseille France;

    Sorbonne Univ Inst Jean Le Rond Alembert UMR CNRS 7190 F-75005 Paris France|CNRS INSIS 1C Av Rech Sci F-45071 Orleans 2 France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Microgravity; Flame spread; Soot; Ambient conditions; Optical diagnostics;

    机译:微匍匐;火焰传播;烟灰;环境条件;光学诊断;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号