首页> 外文期刊>Combustion and Flame >Dynamics of hydrogen-oxygen-argon cellular detonations with a constant mean lateral strain rate
【24h】

Dynamics of hydrogen-oxygen-argon cellular detonations with a constant mean lateral strain rate

机译:具有恒定均值横向应变率的氢氧氩气爆炸的动态

获取原文
获取原文并翻译 | 示例
           

摘要

The present work revisits the problem of modeling the real gaseous detonation dynamics at the macroscale by simple steady one-dimensional (1D) models. Experiments of detonations propagating in channels with exponentially expanding cross-sections were conducted in the H-2/O-2/Ar reactive system. Steady detonation waves were obtained at the macro-scale, with cellular structures characterized by reactive transverse waves. For all the mixtures studied, the dependence of the mean detonation speed was found to be in excellent agreement with first principles predictions of quasi-1D detonation dynamics with lateral strain rate predicted from detailed chemical kinetic models. This excellent agreement departs from the earlier experiments of Radulescu and Borzou (2018) in more unstable detonations. The excellent agreement is likely due to the much longer reaction zone lengths of argon diluted hydrogen oxygen detonations at low pressures, as compared with the characteristic induction zone lengths. While the cellular instability modifies the detonation induction zone, the detonation dynamics at the macro-scale are arguably controlled by its hydrodynamic thickness. Near the limit, minor discrepancy is observed, with the experimental detonations typically continuing to propagate to slightly higher lateral strain rates and higher velocity deficits. (C) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:目前工作通过简单稳定的一维(1D)模型来重新审视在Macroscale在Macroscale上建模真正的气体爆炸动力学的问题。在H-2 / O-2 / AR反应系统中进行了指数膨胀横截面在通道中传播的爆炸的试验。在宏观级别获得稳定的爆炸波,其特征在于具有反应横波的蜂窝结构。对于所研究的所有混合物,发现平均爆轰速度的依赖性与具有由详细化学动力学模型预测的横向应变速率的准1D爆炸动力学的第一原理预测非常一致。这种优秀的一致意见从Radulescu和Borzou(2018)的早期实验中出发了更不稳定的爆炸。与特征感应区长度相比,优异的一致性可能是由于氩气稀释氢氧爆炸的较长的反应区长度。虽然蜂窝不稳定性改变爆炸感应区,但是宏观尺度处的爆炸动力学可以通过其流体动力学厚度来控制。接近极限时,观察到较小的差异,实验爆炸通常继续传播到略高的横向应变速率和更高的速度缺陷。 (c)2020燃烧研究所。由elsevier Inc.出版的所有权利保留。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号