首页> 外文期刊>Combustion and Flame >Effects of non-thermal plasma on the lean blowout limits and CO/NO_x emissions in swirl-stabilized turbulent lean-premixed flames of methane/air
【24h】

Effects of non-thermal plasma on the lean blowout limits and CO/NO_x emissions in swirl-stabilized turbulent lean-premixed flames of methane/air

机译:非热等离子体对筛选/空气旋转湍流稀稀溅火焰瘦井喷限制和CO / NO_X排放的影响

获取原文
获取原文并翻译 | 示例
           

摘要

This study investigates experimentally the effects of non-thermal plasma (NTP) induced by a dielectric barrier discharge (DBD) reactor on the characteristics of swirl-stabilized turbulent lean-premixed methane/air flames in a laboratory scale combustor by systematically varying the applied AC voltage, VAC, and frequency, f(AC). Especially, it is elucidated how the NTP influences the lean blowout (LBO) limits and the characteristics of CO/NOx), emissions depending on flame configuration. Without applying the NTP as the mixture equivalence ratio, phi, decreases from the stoichiometry to an LBO limit, the flame configuration changes from an M-flame (Regime I) to a conical flame (Regime II) and to a columnar flame (Regime III) for the whole range of the mixture nozzle exit velocity, U-0, (4-10 m/s). With the NTP, however, it exhibits only Regimes I and II at relatively-low U(0)range (4-6 m/s), while all three regimes at relatively-high U-0 range (7-10 m/s). For both velocity ranges, the LBO limits are significantly extended by the NTP enhancing the flame stability. Under the relatively-low U-0 range, streamers induced by the DBD reactor play a critical role in stabilizing the flames such that the degree of extension of the LBO limit depends linearly on V-AC and f(AC). Under the relatively-high U-0 range, however, ozone generated by the DBD reactor in Regime III is found to be a major reason in extending the LBO limit, which is substantiated by another flame regime diagram with ozone addition only, and hence, the extension of LBO limit minimally depends on f(AC). Simultaneously, the NTP considerably reduces CO emission, while slightly increases NOx emission near the LBO limits due to the enhanced combustion by ozone. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:本研究通过系统地改变应用的AC,实验研究了介电阻挡放电(DBD)反应器引起的介电阻挡放电(DBD)反应器诱导的非热等离子体(NTP)对实验室燃烧器中的旋涡稳定的湍流瘦预混甲烷/空气火焰的特性电压,VAC和频率,F(AC)。特别是,阐明NTP如何影响贫井喷(LBO)限制和CO / NOx的特性,这取决于火焰配置。在不施加NTP作为混合等效率的情况下,PHI从化学计量降低到LBO极限,火焰构造从M-Flame(制度I)变为锥形火焰(制度II)和柱状火焰(制度III)的变化)对于混合物喷嘴出口速度的整个范围,U-0,(4-10米/秒)。然而,利用NTP,它只在相对低的U(0)范围(4-6米/秒)处表现出I和II,而在相对高的U-0范围内的所有三个制度(7-10米/秒)。对于两个速度范围,通过NTP增强火焰稳定性,LBO限制显着延伸。在相对低的U-0范围内,由DBD反应器引起的炉在稳定火焰时发挥着关键作用,使得LBO限制的延伸程度在V-AC和F(AC)上依赖于线性。然而,在相对高的U-0范围内,发现由制度III中的DBD反应器产生的臭氧是延长LBO限制的主要原因,其由另一个火焰制度图仅用臭氧添加而证实,因此LBO限制的延伸微门依赖于F(AC)。同时,NTP显着降低了CO发射,而由于臭氧的增强燃烧,LBO限制附近的NOx排放量略微增加。 (c)2019燃烧研究所。由elsevier Inc.出版的所有权利保留。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号