...
首页> 外文期刊>Combustion and Flame >High vapour pressure nanofuel droplet combustion and heat transfer: Insights into droplet burning time scale, secondary atomisation and coupling of droplet deformations and heat release
【24h】

High vapour pressure nanofuel droplet combustion and heat transfer: Insights into droplet burning time scale, secondary atomisation and coupling of droplet deformations and heat release

机译:高蒸气压纳米燃料液滴燃烧和传热:洞察液滴燃烧的时间尺度,二次雾化以及液滴变形与热量释放的耦合

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Combustion characteristics of ethanol-water (EW) droplets laden with ceria nanoparticles are investigated. The present experimental study focuses on three facets of droplet combustion (i) burning time scale of droplets with and without NPs, (ii) pathways of secondary atomisation due to interface deformations and (iii) coupling of droplet shape deformations and flame heat release. A theoretical vaporisation timescale is advocated which considers natural convection-based evaporation, mass loss due to daughter droplet ejections, and flow through porous media. Droplets seeded with ceria nanoparticles, exhibit arrested surface undulations although internal ebullition is discernibly enhanced as compared to EW droplets without NPs. Deformations and formation of surface craters in EW droplets are traced to the imbalance between local vapour recoil (due to rapid ethanol vaporisation) and surface tension. Such craters collapse and form high-speed ligaments which eventually break at the tip through Rayleigh Plateau mechanism. This pathway of secondary atomisation of EW droplets has been elucidated using a modified local weber number. On the contrary, for nanofuels, bubble rupture is the mechanism behind the surface crater formation. Proper orthogonal decomposition (POD) technique is utilised for investigating the droplet shape and flame heat release coupling. EW droplet shape and HR are found to be a synced system with a phase lag arising from the flame response timescale. However, a weak coupling is detected for nanofuel droplets. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:研究了载有二氧化铈纳米颗粒的乙醇-水(EW)液滴的燃烧特性。目前的实验研究集中在液滴燃烧的三个方面(i)具有和不具有NP的液滴的燃烧时间尺度,(ii)由于界面变形而引起的二次雾化途径,以及(iii)液滴形状变形与火焰热释放的耦合。提出了一个理论上的气化时间尺度,该尺度考虑了基于自然对流的蒸发,由于子液滴喷射而造成的质量损失以及流经多孔介质的质量。尽管与不使用NP的EW液滴相比,内部沸腾明显增强,但以二氧化铈纳米粒子接种的液滴表现出了被阻止的表面起伏。 EW小滴中表面凹坑的变形和形成可追溯到局部蒸气后冲(由于乙醇快速蒸发)和表面张力之间的不平衡。这些陨石坑坍塌并形成高速韧带,最终通过瑞利高原机制在尖端破裂。 EW液滴二次雾化的这种途径已使用改进的局部韦伯数阐明。相反,对于纳米燃料,气泡破裂是表面火山口形成的机制。适当的正交分解(POD)技术用于研究液滴的形状和火焰放热耦合。发现EW液滴形状和HR是一个同步系统,其相位滞后是由火焰响应时间尺度引起的。然而,对于纳米燃料液滴检测到弱耦合。 (C)2019燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号