...
首页> 外文期刊>Coastal engineering >Flow structure and bottom friction of the nonlinear turbulent boundary layer under stormy waves
【24h】

Flow structure and bottom friction of the nonlinear turbulent boundary layer under stormy waves

机译:暴风雨波下非线性湍流边界层的流动结构和底部摩擦

获取原文
获取原文并翻译 | 示例
           

摘要

Wave environment equivalent to the full-scale nearshore storm was generated in a large wave flume, and the flow within wave boundary layer was measured using an acoustic Vectrino profiler. Analysis were made on various factors including the velocity profile, phase lead, boundary layer thickness, steady streaming, turbulence as well as bottom shear stress, and comparisons were made with existing studies using oscillatory flow tunnels. Results show that the phase lead in the boundary layer is less significant compared to previous tunnel experiments, generally smaller than 20 degrees. Free surface and vertical velocity lead to prominent wave-induced Reynolds stress at the top of the boundary layer, resulting in a thinner boundary layer. Both wave-induced Reynolds stress and wave shape asymmetry contribute to the steady streaming, making its direction either onshore or offshore. Relationship of friction factor versus relative roughness generally agrees with the exponential expression in the literatures for rough turbulent boundary layer, however the value of friction factor is larger. It is stressed that the friction factor would be several times higher if the free stream velocity is calculated using linear wave theory, which is questionable as the measured waves in the large wave flume were shown to be highly nonlinear. To compensate the nonlinear effects which significantly contribute to the maximum bed shear stress, a velocity skewness factor based on second-order Stokes wave theory was introduced. For predicting the intra-wave bed shear stress, a time-varying friction factor was also constructed, which was proved to have acceptable precision compared with experimental data. These formulations have simple, explicit expressions that can be used in practical engineering applications, especially for the nonlinear waves under nearshore storm conditions.
机译:在大波形壳中产生相当于满量程近海风暴的波浪环境,使用声学VectRino分析器测量波边界层内的流动。在包括速度曲线,相铅,边界层厚度,稳定流,湍流以及底部剪切应力的各种因子上进行分析,以及使用振荡流动隧道的现有研究进行比较。结果表明,与先前的隧道实验相比,边界层中的相位引线通常小于20度。自由表面和垂直速度导致边界层顶部的突出波引起的雷诺应力,导致较薄的边界层。波引起的雷诺应力和波形不对称有助于稳定流,在陆上或海上方向。摩擦因子与相对粗糙度的关系通常同意粗湍流边界层的文献中的指数表达,然而摩擦系数的值较大。强调,如果使用线性波理论计算自由流速度,则摩擦因子将多倍,这是可疑的,作为大波浪管中的测量波被认为是高度的非线性的。为了补偿显着贡献最大床剪切应力的非线性效应,引入了基于二阶Stokes波理论的速度偏斜因子。为了预测波浪内涂层剪切应力,还构造了时变摩擦系数,其与实验数据相比已经证明具有可接受的精度。这些配方具有简单,明确的表达式,可用于实际工程应用,特别是对于近岸风暴条件下的非线性波。

著录项

  • 来源
    《Coastal engineering》 |2021年第3期|103811.1-103811.23|共23页
  • 作者单位

    MOT Tianjin Res Inst Water Transport Engn Natl Engn Lab Port Hydraul Construct Technol Tianjin 300456 Peoples R China;

    Hohai Univ State Key Lab Hydrol Water Resources & Hydraul En Nanjing 210098 Peoples R China;

    Shandong Univ Sci & Technol Coll Transportat Qingdao 266590 Peoples R China;

    CCCC First Harbor Engn Co Ltd Tianjin 300461 Peoples R China;

    MOT Tianjin Res Inst Water Transport Engn Natl Engn Lab Port Hydraul Construct Technol Tianjin 300456 Peoples R China;

    MOT Tianjin Res Inst Water Transport Engn Natl Engn Lab Port Hydraul Construct Technol Tianjin 300456 Peoples R China;

    Changsha Univ Sci & Technol Sch Hydraul Engn Changsha 410114 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Large wave flume; Wave boundary layer; Nonlinear waves; Bottom friction; Turbulence;

    机译:大波形小管;波边界层;非线性波;底部摩擦;湍流;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号