首页> 外文期刊>Clays and clay minerals >MAPPING SOIL PARTICLE-SIZE FRACTIONS USING ADDITIVE LOG-RATIO (ALR) AND ISOMETRIC LOG-RATIO (ILR) TRANSFORMATIONS AND PROXIMALLY SENSED ANCILLARY DATA
【24h】

MAPPING SOIL PARTICLE-SIZE FRACTIONS USING ADDITIVE LOG-RATIO (ALR) AND ISOMETRIC LOG-RATIO (ILR) TRANSFORMATIONS AND PROXIMALLY SENSED ANCILLARY DATA

机译:利用加法对数比(ALR)和等距对数比(ILR)变换和近似传感的辅助数据来映射土壤粒径分数

获取原文
获取原文并翻译 | 示例
           

摘要

Together, the three particle size fractions (PSFs) of clay, silt, and sand are the most fundamental soil properties because the relative abundance influences the physical, chemical, and biological activities in soil. Unfortunately, determining PSFs requires a laboratory method which is time-consuming. One way to add value is to use digital soil mapping, which relies on empirical models, such as multiple linear regression (MLR), to couple ancillary data to PSFs. This approach does not account for the special requirements of compositional data. Here, ancillary data were coupled, via MLR modelling, to additive log-ratio (ALR) or isometric log-ratio (ILR) transformations of the PSFs to meet these requirements. These three approaches (MLR vs. ALR-MLR and ILR-MLR) were evaluated along with the use of different ancillary data that included proximally sensed gamma-ray spectrometry, electromagnetic induction, and elevation data. In addition, how the prediction might be improved was examined using ancillary data that was measured on transects and was compared to data interpolated from transects spaced far apart. Although the ALR-MLR approach did not produce significantly better results, it predicted soil PSFs that summed to 100 and had the advantage of interpreting the ancillary data relative to the original coordinates (i.e. clay, silt, and sand). For the prediction of PSFs at various depths, all ancillary data were useful. Elevation and gamma-ray data were slightly better for topsoil and elevation and electromagnetic (EM) data were better for subsoil prediction. In addition, a smaller transect spacing (26 m) and number of samples (9 - 16) might be adopted for mapping soil PSFs and soil texture across the study field. The ALRMLR approach can be applied elsewhere to map the spatial distribution of clay minerals.
机译:总之,粘土,淤泥和沙子的三个粒径分数(PSF)是最基本的土壤特性,因为相对丰度会影响土壤的物理,化学和生物活性。不幸的是,确定PSF需要一种费时的实验室方法。增值的一种方法是使用数字土壤测绘,它依赖于经验模型(例如多元线性回归(MLR))将辅助数据耦合到PSF。这种方法没有考虑组成数据的特殊要求。在这里,辅助数据通过MLR建模耦合到PSF的加法对数比(ALR)或等距对数比(ILR)转换,以满足这些要求。对这三种方法(MLR与ALR-MLR和ILR-MLR)进行了评估,并使用了不同的辅助数据,包括近端伽马射线能谱,电磁感应和海拔数据。此外,使用在样带上测量的辅助数据检查了如何改善预测,并将其与从相距较远的样带内插的数据进行了比较。尽管ALR-MLR方法并未产生明显更好的结果,但它预测的土壤PSF总计为100,并且具有相对于原始坐标(即粘土,粉砂和沙土)解释辅助数据的优势。对于各种深度的PSF预测,所有辅助数据都是有用的。高程和伽马射线数据对表土更好,高程和电磁(EM)数据对下层土壤更好。此外,可以采用较小的样条间距(26 m)和样本数量(9-16)来绘制研究区域内的土壤PSF和土壤质地的图。 ALRMLR方法可以在其他地方应用,以绘制粘土矿物的空间分布图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号