...
首页> 外文期刊>Chemosphere >Metabolical shifts towards alternative BTEX biodegradation intermediates induced by perfluorinated compounds in firefighting foams
【24h】

Metabolical shifts towards alternative BTEX biodegradation intermediates induced by perfluorinated compounds in firefighting foams

机译:消防泡沫中全氟化合物诱导的代谢向替代性BTEX生物降解中间体转变

获取原文
获取原文并翻译 | 示例
           

摘要

The type and concentration of perfluorinated compounds (PFCs) can induce different types of enzymes and promote alternate patterns of BTEX transformation. However, it is not known how the presence of active fluorocarbon-degrading microbial populations affects the transformation of BTEX. In addition to chemical analysis at the molecular level, our research approached the 'aqueous film forming fire-fighting foams (AFFF) and BTEX co-contamination at a large-scale with respirometers to quantify the total microbial metabolism of soil via CO2 output levels. The intended outcome of this research was to obtain and characterize shifts in BTEX degradation at a set realistic environmental condition while measuring byproducts and CO2 production. Both methodologies complimentarily provided an in-depth knowledge of the environmental behavior of fire-fighting foams. The biodegradation was monitored using head space sampling and two types of gas chromatography: thermal conductivity detector and flame ionization detector. Headspace samples were periodically withdrawn for BTEX biodegradation and CO2 production analysis. Our research suggests the discovery of an altered metabolic pathway in aromatic hydrocarbons biodegradation that is directly affected by fluorinated substances. The fluorinated compounds affected the BTEX biodegradation kinetics, as PFCs may contribute to a shift in styrene and catechol concentrations in co-contamination scenarios. A faster production of styrene and catechol was detected. Catechol is also rapidly consumed, thus undergoing further metabolic stages earlier under the presence of PFCs. The release of AFFF compounds not only changes byproducts output but also drastically disturbs the soil microbiota according to the highly variable CO2 yields. Therefore, we observed a high sensitivity of microbial consortia due to PFCs in the AFFF formulation, therefore shifting their BTEX degradation routes in terms of intermediate products concentration. (C) 2016 Elsevier Ltd. All rights reserved.
机译:全氟化合物(PFC)的类型和浓度可以诱导不同类型的酶,并促进BTEX转化的交替模式。但是,尚不知道降解活性碳氟化合物的微生物种群如何影响BTEX的转化。除了在分子水平上进行化学分析外,我们的研究还使用呼吸计对“形成水膜的灭火泡沫(AFFF)和BTEX共同污染”进行了大规模研究,以通过CO2排放水平量化土壤的总微生物代谢。这项研究的预期结果是,在设定的实际环境条件下,获得并表征BTEX降解的变化,同时测量副产物和CO2的产生。两种方法都免费提供了有关灭火泡沫的环境行为的深入知识。使用顶空进样和两种气相色谱法监测生物降解:热导检测器和火焰电离检测器。定期抽取顶空样品用于BTEX生物降解和CO2产生分析。我们的研究表明发现了直接受氟化物影响的芳香烃生物降解中代谢途径的改变。氟化化合物影响了BTEX的生物降解动力学,因为在共污染情况下,PFC可能会导致苯乙烯和邻苯二酚浓度的变化。检测到苯乙烯和邻苯二酚的生产更快。邻苯二酚也被快速消耗,因此在PFC的存在下更早地经历了新陈代谢阶段。 AFFF化合物的释放不仅会改变副产物的产量,而且还会因高度可变的CO2产量而严重干扰土壤微生物。因此,由于AFFF配方中的PFC,我们观察到了微生物菌落的高敏感性,因此根据中间产物浓度改变了它们的BTEX降解途径。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Chemosphere》 |2017年第4期|49-60|共12页
  • 作者单位

    Sao Paulo State Univ, UNESP, Inst Biociencias, Dept Bioquim & Microbiol, Ave 24 A,1515 Bela Vista, BR-13506900 Rio Claro, SP, Brazil;

    Sao Paulo State Univ, UNESP, Fac Ciencias Agr & Tecnol, Rodovia Comandante Joao Ribeiro de Barros,SP 294, BR-17900000 Dracena, SP, Brazil;

    Sao Paulo State Univ, UNESP, Inst Biociencias, Dept Bioquim & Microbiol, Ave 24 A,1515 Bela Vista, BR-13506900 Rio Claro, SP, Brazil;

    Sao Paulo State Univ, UNESP, Inst Biociencias, Dept Bioquim & Microbiol, Ave 24 A,1515 Bela Vista, BR-13506900 Rio Claro, SP, Brazil;

    Sao Paulo State Univ, UNESP, Inst Biociencias, Dept Bioquim & Microbiol, Ave 24 A,1515 Bela Vista, BR-13506900 Rio Claro, SP, Brazil;

    Sao Paulo State Univ, UNESP, Inst Biociencias, Dept Bioquim & Microbiol, Ave 24 A,1515 Bela Vista, BR-13506900 Rio Claro, SP, Brazil;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Gas-chomatrography; Respirometry; Catechol; Styrene; AFFF;

    机译:气相色谱;呼吸测定法;儿茶酚;苯乙烯;AFFF;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号