...
首页> 外文期刊>Вестник Московского авиационного института >ПРИМЕНЕНИЕ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ ДЛЯ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ПРИВОДНЕНИЯ САМОЛЕТОВ И ВЕРТОЛЕТОВ РАЗЛИЧНОГО ТИПА
【24h】

ПРИМЕНЕНИЕ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ ДЛЯ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ПРИВОДНЕНИЯ САМОЛЕТОВ И ВЕРТОЛЕТОВ РАЗЛИЧНОГО ТИПА

机译:最终元素法在确定各类直升机驱动参数中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

The problem of safety ensuring while an aircraft forced water landing is topical due to periodic incidents while the flights over the water. According to the European Aviation Safety Agency information, the helicopters that have passed the certification procedure topple when performing water landing. This fact indicates that the process of aircraft dynamic contact water surface is insufficiently studied, and the need to account for the aircraft spatial position parameters while water landing. Confirmation of compliance with requirements of the airworthiness standards (AP, FAR, JAR) while emergency landing and subsequent sailing of the aircraft is based on the results of model tests, which determine the aircraft behavior, the structure loading, its possible destruction and conditions of the most favorable water landing. The hydrodynamic characteristics of models of aircraft fuselages of ground and water basing in the water landing mode, and helicopter equipment with the system of emergency splashdown are studied. A method allowing study such processes at the stage of preliminary design is the finite element method application. However, validity of the results obtained in this way should be verified based on experimental data to enable further practical application of the experience gained. The article presents the verification results of finite element models of simple geometric bodies (inclined plate, cylinder). These are simplified models that duplicate the shapes of the amphibious aircraft float, the fuselage of the ground airplane and the helicopter ballonet. Verification was perormed employing the concept of Euler-Lagrangian interaction using the generalized "structure-to-fluid" communication simulation algorithm. For the inclined plate, the lifting force coefficients were determined for various deadrise angles and trim at its gliding on incomplete width. A graphic dependence comparing the experimental and computed values was plotted. The changing of overload at the center of gravity was demonstrated for the gliding cylinder, and comparison was performed with experimental data and approximate analytical theory. In all cases satisfactory convergence of the results was obtained. A helicopter mathematical model with a system of emergency water landing was developed to compute the depth of the ballonet sinking, which determines the level of hydrostatic and hydrodynamic loads. The general case of driving a helicopter to the approaching slope of the wave was simulated with the presence of the initial slip at the moment of contact with the water surface. Based on the graphical dependence of the ballonet transoms movements, a technique for the computed immersion depths determining was formulated. The visualization of the helicopter position change while the water landing process is demonstrated. Based on the developed finite-element model, the other parameters of water landing of a helicopter with emergency splashdown system (overloading in the helicopter center of mass, loads on the fuselage bottom, etc.) can be determined. The article shows, that a similar approach can be employed to simulate the process of various types of aircraft water landing, including amphibious and ground ones.%Представлены результаты расчетных исследований по определению параметров приводнения летательных аппаратов (ЛА), проведенных с применением метода конечных элементов. К параметрам приводнения отнесены величины действующих нагрузок и параметры пространственного положения летательного аппарата. Выполнена верификация использованных математических моделей на основе экспериментальных данных, показана возможность их практического применения при оценке условий нагружения и параметров приводнения ЛА различных типов - самолетов и вертолетов.
机译:由于在水上飞行时的周期性事件,飞机强制降落时确保安全的问题很普遍。根据欧洲航空安全局的信息,通过认证程序的直升机在降落时会倾覆。这一事实表明,对飞机动态接触水面的过程研究不足,并且在水着陆时需要考虑飞机的空间位置参数。在飞机紧急着陆和随后航行时确认是否符合适航标准(AP,FAR,JAR)的要求是基于模型测试的结果,该测试确定了飞机的行为,结构载荷,其可能的破坏和条件最有利的水降落。研究了以水着陆方式为基础的飞机水陆机身模型的水动力特性,并研究了具有应急降落系统的直升机装备。允许在初步设计阶段研究此类过程的方法是有限元方法应用。但是,应根据实验数据验证以这种方式获得的结果的有效性,以使获得的经验得到进一步的实际应用。本文介绍了简单几何体(斜板,圆柱体)的有限元模型的验证结果。这些是简化的模型,可以复制两栖飞机的漂浮物,地面飞机的机身和直升机的副翼的形状。使用欧拉-拉格朗日相互作用的概念,使用广义的“结构-流体”通信仿真算法,进行验证。对于倾斜板,确定了各种死角的提升力系数,并在不完全宽度滑行时进行修整。绘制了图形相关性,比较了实验值和计算值。演示了滑行缸在重心处的过载变化,并与实验数据和近似分析理论进行了比较。在所有情况下,结果均令人满意。开发了带有紧急水着陆系统的直升机数学模型,以计算气球沉没的深度,从而确定静水压力和水动力负载的水平。在与水面接触时存在初始滑移的情况下,模拟了将直升机驾驶到波浪接近坡度的一般情况。基于对one骨横梁运动的图形依赖性,制定了一种用于确定浸没深度的技术。演示了着陆过程中直升机位置变化的可视化。基于开发的有限元模型,可以确定具有紧急降落系统的直升机的水着陆的其他参数(直升机质心中的超载,机身底部的载荷等)。该文章表明,一个类似的方法可以被采用来模拟各种类型的飞机降落的水,包括两栖和地面的人的处理。%Представленырезультатырасчетныхисследованийпоопределениюпараметровприводнениялетательныхаппаратов(ЛА),проведенныхсприменениемметодаконечныхэлементов 。 Кпараметрамприводненияотнесенывеличиныдействующихнагрузокипараметрыпространеенноооооо Выполненаверификацияиспользованныхматематическихмоделейнаосновеэкспериментальныхданных,показанавозможностьихпрактическогопримененияприоценкеусловийнагруженияипараметровприводненияЛАразличныхтипов - самолетовивертолетов。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号