首页> 外文期刊>Biomass & bioenergy >Experimental optimization of thermochemical pretreatment of sal (Shorea robusta) sawdust by Central Composite Design study for bioethanol production by co-fermentation using Saccharomyces cerevisiae (MTCC-36) and Pichia stipitis (NCIM-3498)
【24h】

Experimental optimization of thermochemical pretreatment of sal (Shorea robusta) sawdust by Central Composite Design study for bioethanol production by co-fermentation using Saccharomyces cerevisiae (MTCC-36) and Pichia stipitis (NCIM-3498)

机译:通过酿酒酵母(MTCC-36)和Pichia智能肝炎(NCIM-3498)通过共复合设计研究中央复合设计研究的实验优化萨尔(Shorea Robusta)锯末的生物乙醇生产研究

获取原文
获取原文并翻译 | 示例
           

摘要

Production of bioethanol was attempted using sawdust of sal (Shorea robusta), a hardwood tree species known for its excellent quality timber. Sawdust, a lignocellulosic biomass waste is generated in plenty from the furniture industry. To the best of our knowledge, this is the first study that uses design of experiment (DoE) approach for enhancing total reducing sugar (TRS) from thermochemically pretreated sal sawdust (SS) biomass. Statistical optimization of thermochemical pretreatment was performed using Central Composite Design (CCD) tool of Response Surface Methodology (RSM) using three process parameters (biomass loading, chemical concentration and incubation time). It resulted in about 2.05-fold more reducing sugars (7.0 g L-1) at 121 °C, 1 bar pressure and 30 min incubation time as compared to OVAT approach (3.4 g L-1). Enzymatic hydrolysis carried out by commercial cellulase and pectinase (enzyme loading 5U/g biomass) enzymes facilitated liberation of 19.09 g L-1 TRS. The optimum delignification percentage obtained was 27.27 ± 0.20% under optimized thermochemical conditions. Delignification estimation studies were done using Folin-Ciocalteu (F-C) and phloroglucinol-HCl test. Further analysis involved Powder X-Ray Diffraction (PXRD), Scanning Electron Microscopy (SEM) analysis and Fourier-transform infrared (FTIR) data which clearly confirmed the breakdown of cellulose and hemicellulose, removal of lignin and morphological changes in the pretreated SS biomass. Fermentation using co-culture of Saccharomyces cerevisiae (MTCC-36) and Pichia stipitis (NCIM-3498) at 30 °C, pH 5.0 resulted in 9.43 g L-1 bioethanol concentration after 24 h with a conversion efficiency of 97%. These results indicate that sal sawdust can serve as a promising feedstock for bioethanol production.
机译:尝试生产生物乙醇,使用锯末(Shorea Robusta),一种用于其优质木材的硬木树种。锯末,木质纤维素生物质废物是从家具行业充足的。据我们所知,这是第一项研究,它使用实验(DOE)方法设计用于从热化学预处理的SAL锯末(SS)生物质中加强总还原糖(TRS)。使用三个工艺参数(生物质负载,化学浓度和孵育时间),使用中央复合设计(CCD)工具进行热化学预处理的统计优化。与OVAT方法相比,它在121℃,1巴压力和30分钟的培养时间下减少2.05倍以下的还原糖(7.0g L-1)。通过商业纤维素酶和果胶酶(酶负载5u / g生物质)酶进行酶水解,促进19.09g L-1 TRS的释放。优化的热化学条件下获得的最佳脱磷酸率为27.27±0.20%。使用Folin-Ciocalteu(F-C)和甘油蛋白-HCl检验进行脱铜估计研究。进一步分析涉及粉末X射线衍射(PXRD),扫描电子显微镜(SEM)分析和傅里叶变换红外(FTIR)数据,清楚地证实了纤维素和半纤维素的崩溃,除去了预处理的SS生物质中的木质素和形态学变化。在30℃下使用酿酒酵母(MTCC-36)和Pichia智能炎(NCIM-3498)的共培养,pH 5.0在24小时后产生9.43g L-1生物乙醇浓度,转化效率为97%。这些结果表明,Sal锯末可以作为生物乙醇生产的有希望的原料。

著录项

  • 来源
    《Biomass & bioenergy》 |2020年第12期|105819.1-105819.12|共12页
  • 作者单位

    School of Biotechnology Shri Mata Vaishno Devi University Katra J&K-182320 India;

    School of Biotechnology Shri Mata Vaishno Devi University Katra J&K-182320 India;

    School of Biotechnology Shri Mata Vaishno Devi University Katra J&K-182320 India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Shorea robusta; Sawdust; Forest waste; Biomass; Bioethanol; Biofuel;

    机译:Shorea Robusta;锯末;森林垃圾;生物质;生物乙醇;生物燃料;

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号