首页> 外文期刊>BioChip journal >High-speed three-dimensional characterization of fluid flows induced by micro-objects in deep microchannels
【24h】

High-speed three-dimensional characterization of fluid flows induced by micro-objects in deep microchannels

机译:深层微通道中微物体引起的流体流动的高速三维表征

获取原文
获取原文并翻译 | 示例
           

摘要

Bio-inspired studies of micro-objects in microfluidics demand quantitative microflow visualization tools to evaluate their three-dimensional (3D) fluid dynamic performance. Experimental fluid dynamic measurements of bio-hybrid systems are employed when non-traditional small-scales, magnetohy-drodynamic coupling and nonlinear material properties are involved. In this study a stereoscopic micro-Particle Image Velocimetry (μPIV) system was developed to characterize instantaneous flow fields induced by (1) a micro-robot (280 × 200 × 150 μm~3) and (2) self-assembled magnetically actuated artificial cilia (~50 μm in diameter and 500 μm in depth). A custom built micro jet flow microchannel was tested to provide the quantitative evidence of measurement accuracy with 14% error compared to theoretical solutions in the out-of-plane velocity component. Followed by these verification experiments, instantaneous in-plane spinning motion was analyzed in conjunction with translational movement and out-of-plane rotational movements of the micro-robot to obtain the induced 2D-3C (two-dimension, three-component) fluid velocity data. The second test case investigated the micro-scale vortical flow structures that were generated by self-assembled magnetically driven artificial cilia. The strength of this 3D micro vortex structure was computed based on the 3D flow measurements. In combination with the asymmetric cyclic motion of the magnetically actuated artificial cilia, it is expected that these structures can generate transverse flow efficiently in 3D, and thus provide a potential alternative for mixing in low Reynolds number flows, analogous to a micromixer. The acquired 3D microflow field, along with the validation tests, further extends the capability of using stereoscopic μPIV technique to evaluate the performance of noninvasive microflow manipulators.
机译:生物启发性的研究微流体中的微对象需要定量的微流可视化工具来评估其三维(3D)流体动力学性能。当涉及非传统的小尺度,磁磁-动力耦合和非线性材料特性时,采用生物混合系统的实验流体动力学测量。在这项研究中,开发了一种立体微颗粒图像测速(μPIV)系统,以表征由(1)微型机器人(280×200×150μm〜3)和(2)自组装磁驱动人工产生的瞬时流场。纤毛(直径约50μm,深度约500μm)。测试了定制的微型射流微通道,以提供相对于面外速度分量的理论解决方案具有14%误差的测量精度的定量证据。在进行这些验证实验之后,结合微型机器人的平移运动和平面外旋转运动对瞬时平面内旋转运动进行了分析,从而获得了诱导的2D-3C(二维,三分量)流体速度数据。第二个测试案例研究了自组装磁驱动人工纤毛产生的微观尺度的涡流结构。根据3D流量测量结果计算出此3D微涡旋结构的强度。结合磁致驱动的人造纤毛的不对称循环运动,预计这些结构可以在3D中有效地产生横向流,从而提供了与微型混合器类似的低雷诺数流混合的潜在替代方案。获得的3D微流场以及验证测试进一步扩展了使用立体μPIV技术评估无创微流操纵器性能的能力。

著录项

  • 来源
    《BioChip journal》 |2013年第2期|95-103|共9页
  • 作者

    Chia-Yuan Chen; Kerem Pekkan;

  • 作者单位

    Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan;

    Department of Biomedical and Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15219, USA,Department of Mechanical Engineering, Koc University, Rumelifeneri, Istanbul, Turkey;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Micro particle image velocimetry; PIV; micro-robot; Artificial cilial; Biomimetics;

    机译:微粒图像测速;PIV;微型机器人人造丝仿生;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号