...
首页> 外文期刊>Atmospheric environment >Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: Magnitudes and impacts of oxidant sources
【24h】

Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: Magnitudes and impacts of oxidant sources

机译:居室室内空气中臭氧,羟自由基和硝酸根自由基对挥发性有机化合物的转化:氧化剂的强度和影响

获取原文
获取原文并翻译 | 示例
           

摘要

Indoor chemistry may be initiated by reactions of ozone (O_3), the hydroxyl radical (OH), or the nitrate radical (NO_3) with volatile organic compounds (VOC). The principal indoor source of O_3 is air exchange, while OH and NO_3 formation are considered as primarily from O_3 reactions with alkenes and nitrogen dioxide (NO_2), respectively. Herein, we used time-averaged models for residences to predict O_3, OH, and NO_3 concentrations and their impacts on conversion of typical residential VOC profiles, within a Monte Carlo framework that varied inputs probabilistically. We accounted for established oxidant sources, as well as explored the importance of two newly realized indoor sources: (ⅰ) the photolysis of nitrous acid (HONO) indoors to generate OH and (ⅱ) the reaction of stabilized Criegee intermediates (SCI) with NO_2 to generate NO_3. We found total VOC conversion to be dominated by reactions both with O_3, which almost solely reacted with D-limonene, and also with OH, which reacted with D-limonene, other terpenes, alcohols, aldehydes, and aromatics. VOC oxidation rates increased with air exchange, outdoor O_3, NO_2 and D-limonene sources, and indoor photolysis rates; and they decreased with O_3 deposition and nitric oxide (NO) sources. Photolysis was a strong OH formation mechanism for high NO, NO_2, and HONO settings, but SCI/NO_2 reactions weakly generated NO_3 except for only a few cases.
机译:室内化学可以通过臭氧(O_3),羟基自由基(OH)或硝酸根自由基(NO_3)与挥发性有机化合物(VOC)的反应来引发。室内O_3的主要来源是空气交换,而OH和NO_3的形成主要被认为分别来自与烯烃和二氧化氮(NO_2)的O_3反应。在本文中,我们使用了时间平均模型来预测居民的O_3,OH和NO_3浓度及其对典型居民VOC曲线转换的影响,这是在蒙特卡洛框架内(该概率可能会变化)。我们考虑了已建立的氧化剂来源,并探讨了两个新近实现的室内来源的重要性:(ⅰ)室内亚硝酸(HONO)的光解以生成OH;(ⅱ)稳定的Criegee中间体(SCI)与NO_2的反应生成NO_3。我们发现,VOC的总转化率主要由与O_3(几乎仅与D-柠檬烯反应)以及与OH(与D-柠檬烯,其他萜烯,醇,醛和芳烃反应)的反应决定。挥发性有机化合物的氧化速率随着空气交换,室外O_3,NO_2和D-柠檬烯来源以及室内光解速率的增加而增加。并且它们随着O_3沉积和一氧化氮(NO)源而减少。对于高NO,NO_2和HONO设置,光解是一种强大的OH形成机理,但是除少数情况外,SCI / NO_2反应几乎不会产生NO_3。

著录项

  • 来源
    《Atmospheric environment》 |2015年第4期|382-391|共10页
  • 作者单位

    Drexel University, Department of Civil, Architectural and Environmental Engineering, 3141 Chestnut St., Philadelphia, PA 19104, United States;

    Exposure Assessment Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Indoor chemistry; VOC oxidation; Monte Carlo modeling; Photolysis; Terpenes;

    机译:室内化学;VOC氧化;蒙特卡洛建模;光解;萜烯;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号