首页> 外文期刊>The Astrophysical journal >SIMULATION-BASED INVESTIGATION OF A MODEL FOR THE INTERACTION BETWEEN STELLAR MAGNETOSPHERES AND CIRCUMSTELLAR ACCRETION DISKS
【24h】

SIMULATION-BASED INVESTIGATION OF A MODEL FOR THE INTERACTION BETWEEN STELLAR MAGNETOSPHERES AND CIRCUMSTELLAR ACCRETION DISKS

机译:基于电磁场的电磁球与圆形吸积盘相互作用模型的研究

获取原文
获取原文并翻译 | 示例
           

摘要

We examine, parametrically, the interaction between the magnetosphere of a rotating young stellar object and a circumstellar accretion disk using 2.5-dimensional (cylindrically symmetric) numerical magnetohydro-dynamic simulations. The interaction drives a collimated outflow, and we find that the jet formation mechanism is robust. For variations in initial disk density of a factor of 16, variations of stellar dipole strength of a factor of 4, and various initial conditions with respect to the disk truncation radius and the existence of a disk field, outflows with similar morphologies were consistently produced. Second, the system is self-regulating, where the outflow properties depend relatively weakly on the parameters above. The large-scale magnetic field structure rapidly evolves to a configuration that removes angular momentum from the disk at a rate that depends most strongly on the field and weakly on the rotation rate of the footpoints of the field in the disk and the mass outflow rate. Third, the simulated jets are episodic, with the timescale of jet outbursts identical to the timescale of magnetically induced oscillations of the inner edge of the disk. To better understand the physics controlling these disk oscillations, we present a semianalytical model and confirm that the oscillation period is set by the spin-down rate of the disk inner edge. Finally, our simulations offer strong evidence that it is indeed the interaction of the stellar magnetosphere with the disk, rather than some primordial field in the disk itself, that is responsible for the formation of jets from these systems.
机译:我们使用2.5维(圆柱对称)数值磁流体动力学模拟,从参数上研究了旋转的年轻恒星物体的磁层与星际吸积盘之间的相互作用。相互作用推动了准直的流出,并且我们发现射流形成机制是可靠的。对于初始磁盘密度变化为16倍,恒星偶极强度变化为4倍,以及相对于磁盘截断半径和存在磁盘场的各种初始条件,始终产生具有相似形态的流出。其次,系统是自调节的,流出特性相对弱地取决于上述参数。大规模的磁场结构迅速发展成一种结构,该结构以最大程度地取决于磁场而弱地取决于磁盘中的磁场脚点的旋转速率和质量流出速率的速率从磁盘上去除角动量。第三,模拟的射流是偶发的,射流爆发的时间尺度与磁盘内缘的磁感应振荡的时间尺度相同。为了更好地理解控制这些磁盘振荡的物理过程,我们提出了一个半解析模型,并确认振荡周期是由磁盘内边缘的旋转速率设定的。最后,我们的模拟提供了有力的证据,表明确实是恒星磁层与磁盘的相互作用,而不是磁盘本身中的某些原始磁场,才是由这些系统形成射流的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号