...
首页> 外文期刊>Acta astronautica >Impact modeling and reactionless control for post-capturing and maneuvering of orbiting objects using a multi-arm space robot
【24h】

Impact modeling and reactionless control for post-capturing and maneuvering of orbiting objects using a multi-arm space robot

机译:利用多臂空间机器人的轨道上捕获和机动的影响和无反作用控制

获取原文
获取原文并翻译 | 示例
           

摘要

Autonomous on-orbit servicing, such as capture, refuel, repair and refurbishment of on-orbit satellites using a robotic arm mounted on servicing satellite is one of the important components of future's space missions. Space robots increase reliability, safety, and ease of execution of space operations, but pose a novel challenge due to micro-gravity and space environments. While capturing high speed orbiting objects, robotic arms undergo impact and require appropriate modeling of the system. In this paper, a unified framework is provided for modeling impact dynamics, post-capture stabilization and target maneuvering of a multi-arm robotic system mounted on a servicing satellite while capturing orbiting objects. The dynamic model of multi-arm space robot is obtained using the Decoupled Natural Orthogonal Complement (DeNOC) based formulation and closed-loop constraint equations. All three phases of the capturing operation, namely, approach, impact, and post-impact are modeled using Impulse-momentum approach and conservation of momentum. In the approach phase, robot arms are planned to move from its initial configuration to the desired capture configuration. In the impact phase, a framework is developed to estimate the impulse forces and changes in the generalized velocities caused by the impact. In post-impact phase, these velocities are used as initial conditions for the post-impact dynamics simulations. The uncontrolled dynamics during post-impact will result in an undesirable motion, thus post-impact reactionless control (minimum base disturbance) strategy is used to maneuver the space robot's arms and target object. As such, the robotic arms can be used to maneuver an astronaut for repair of satellite. Most of the times the parameters of target object are not known. Hence, an adaptive reactionless control strategy has been devised for capturing object with unknown parameters. The effectiveness of the framework is shown using a dual-arm robot mounted on a servicing satellite performing capturing operation for multiple objects. The effects of relative velocity and angle of approach on the impact forces are also investigated.
机译:使用安装在维修卫星上安装的机器人臂的捕获,加油,修复和翻新等自动的轨道服务,例如使用机器人手臂是未来的空间任务的重要组成部分之一。太空机器人提高了可靠性,安全性和易于执行空间操作,而是由于微重力和空间环境引起了一种新的挑战。在捕获高速轨道物体时,机器人武器经历影响并需要适当的系统建模。在本文中,提供了一种统一的框架,用于建模冲击动力学,捕获后稳定和捕获在维修卫星上的多臂机器人系统的目标操纵,同时捕获轨道物体。使用基于去耦的自然正交互补(DENOC)的配方和闭环约束方程获得多臂空间机器人的动态模型。捕获操作的所有三个阶段,即逼近,撞击和后冲击都是利用脉冲动量方法和势力保护的模型。在接近阶段,计划从其初始配置向所需的捕获配置移动机器人臂。在冲击阶段,开发了一个框架来估计脉冲力和由冲击引起的广义速度的变化。在后冲击阶段,这些速度被用作后冲击动态模拟的初始条件。后冲击过程中的不受控制的动态将导致不希望的运动,因此后撞击无效控制(最小基础扰动)策略用于操纵空间机器人的武器和目标物体。因此,机器人臂可用于操纵宇航员进行卫星修复。大多数次数都不知道目标对象的参数。因此,已经设计了一种自适应无反作用控制策略,用于捕获具有未知参数的对象。使用安装在维修卫星上的双臂机器人执行对多个物体进行捕获操作的双臂机器人来示出框架的有效性。还研究了相对速度和接近角度对冲击力的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号